This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable closed-loop performance, while the H∞ controller guarantees robust stability for the closed-loop system. The validation of the techniques is demonstrated through the robust and performance gamma index, where the H∞ controller achieved a robust gamma index of 0.8591, indicating good robustness and the H2 controller achieved a performance gamma index of 2.1972, indicating a desirable performance. The robust control toolbox of MATLAB is used for simulation purposes. Overall, the paper shows that selecting a suitable, robust control strategy is crucial for designing effective control systems, and the H2 and H∞ robust control approaches are viable options for achieving this goal.
Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreAbstract
All the economic units whether productive or service units , strive to achieve specific objectives , their presence and continuity depend on them and the quality of the performance and service present to the society . This units to be able to achieve their objectives , must own basic assets to perform the activities , and apply laws , systems , and instructions , in addition to legal , managerial , and financial authorities . So this units to endeavor maintain this assets , in addition to sound application of laws ,systems . and procedures to enhance their performance . For this purpose arise the role of internal control and internal check in maintenance of assets and sound application of&n
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreBipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe use of a communication network in the closed loop control systems has many advantages such as remotely controlling equipment, low cost, easy to maintenance, efficient information transmission, etc. However, the Networked Control System (NCS) has many drawbacks, such as network-induce end-to-end time delay and packet loss, which lead to significant degradation in controller performance and may result in instability. Aiming at solving performance degradation in NCS, this paper propose to take the advantages and strength of the conventional Proportional-Integral-Derivative (PID), Fuzzy Logic (FL), and Gain Scheduling (GS) fundamentals to design a Fuzzy-PID like-Gain Scheduling (F-PID-GS) control technique, which has been proved to be ef
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show More<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MoreThe production of reactive oxygen species in most diseases including osteoarthritis (OA) is confirmed to be the most destractive process to human cells. To investigate the role of free radicals in patients with OA and by comparing lipid peroxidation marker maloan dialdehyde (MDA) and Vit E as one of the potent antioxidant in Sera of (OA) patients with those in healthy population. The study includes 34 patients with knee OA diagnosed by doctors using different diagnostic parameters techniques , 18 females and 16 males and their age ranged 45 – 78 years , in addition to 32 healthy control 16 males and 16 females. The result revealed a significant elevation in serum MDA sera in both patient groups ( male and female)
... Show More