Preferred Language
Articles
/
AxfrZZIBVTCNdQwC9K9A
Practical Adaptive Fast Terminal Sliding Mode Control for Servo Motors
...Show More Authors

Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further suppress the chattering and overestimation problems. More importantly, the proposed adaptive technique can update the switching gain according to the system uncertainties, which can provide high gain in the reaching phase and then decrease to the smallest value in the sliding phase to avoid the monotonically increasing gain that exists in most adaptation methods. Third, the finite-time stability of the closed-loop system is proved based on the Lyapunov theorem. Finally, the simulation studies and experimental tests verify the effectiveness of the proposed control in terms of better tracking, strong robustness, and reduced chattering, compared to existing algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems
...Show More Authors

In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota

... Show More
View Publication
Scopus (141)
Crossref (129)
Scopus Clarivate Crossref
Publication Date
Tue Jun 18 2024
Journal Name
2024 Ieee 33rd International Symposium On Industrial Electronics (isie)
An Adaptive Integral Sliding Mode Control for Disturbed Servo Motor Systems
...Show More Authors

Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Adaptive Sliding Mode Controller for Servo Actuator System with Friction
...Show More Authors

This paper addresses the use of adaptive sliding mode control for the servo actuator system with friction. The adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, the magnitude of control effort is reduced to the minimal admissible level defined by the conditions for the sliding mode to exist. Secondly, the upper bounds of uncertainties are not required to be known in advance. Therefore, adaptive sliding mode control method can be effectively implemented. The numerical simulation via MATLAB 2014a for servo actuator system with friction is investigated to confirm the effectiveness of the proposed robust adaptive sliding mode control scheme. The results clarify, after

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Ieee Transactions On Systems, Man, And Cybernetics: Systems
Design of Robust Terminal Sliding Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct

... Show More
View Publication
Scopus (57)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Mon Apr 02 2018
Journal Name
Al-nahrain Journal For Engineering Sciences (njes)
Output Feedback Adaptive Sliding Mode Control Design for a Plate Heat Exchanger
...Show More Authors

The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed

... Show More
Preview PDF
Publication Date
Mon Apr 02 2018
Journal Name
Al-nahrain Journal For Engineering Sciences (njes)
Output Feedback Adaptive Sliding Mode Control Design for a Plate Heat Exchanger
...Show More Authors

The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed

... Show More
Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Ieee Transactions On Industrial Electronics
Singular Perturbation-Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots
...Show More Authors

The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Journal Européen Des Systèmes Automatisés
Proxy-based sliding mode vibration control with an adaptive approximation compensator for euler-bernoulli smart beams
...Show More Authors

Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho

... Show More
Crossref (2)
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
2017 Ieee 56th Annual Conference On Decision And Control (cdc)
Hierarchical non-singular terminal sliding mode controller for a single link flexible joint robot manipulator
...Show More Authors

—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t

... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Crossref