Preferred Language
Articles
/
joe-1856
Discharge Coefficient of Contracted Rectangular Sharp-Crested Weirs, an Experimental Study

An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge coefficient and these variables is a non-linear power function with a determination coefficient of 0.97. The importance and normalized importance analysis show that 56.3 % of the discharge coefficient variation is explained by the head-to-contracted width of the weir ratio followed by lower effects of the other variables, namely 16.5, 13.7, 12.4, and 1.2 % for contracted width to flume width ratio, Reynolds number, the head to the contracted width ratio, and Weber, respectively. The effect of the Weber number on the discharge coefficient is much lower than that of the Reynolds number.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Spectroscopic study of dielectric barrier discharge argon plasma at different gas flow rates

Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni

... Show More
Scopus Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
An Experimental Study to Demonstrate the Effect of Alumina Nanoparticles and Synthetic Fibers on Oil Well Cement Class G

    In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Incompressible Flow over an Iced Airfoil

Determining the aerodynamic characteristics of iced airfoil is an important step in aircraft design.  The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Flutter Speed Limits of Cantilever Rectangular and Tapered Plates

The aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2013
Journal Name
International Journal Of Recent Research And Review
Influence of Discharge Pressure on the Plasma Parameter in a Planar Dc-Sputtering Discharge of Argon

Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.

Preview PDF
Publication Date
Sat Mar 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Qualitative Study of Discharge Waste Water from Babil / 2 Batteries Factory in Baghdad

 The quality of industrial water from (Babil / 2 batteries factory in Baghdad) was  investigated, and evaluated the physical and chemical characteristics of the water discharged from sections ALShahen , final collection sank. The values were represented by pH, electrical conductivity, biological oxygen demand, chemical oxygen demand ,total suspended solid, total dissolved solid, sulfate, chloride and heavy metal. The sample  of water collocated  by  two samples per month for 6 months  was taking during the period from Novembers 2013 to May 2014. The results show that industrial waste water factory contains contaminations and has varying value rates the average of PH,EC, TDS, SO4, COD, Pb, Zn, for the final c

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Physics
Fabrication of carbon nanopowder by arc discharge technique

Carbon Nanopowder was fabricated by arc discharge technique at deposition pressure of 10-5 mbar Argon gas on glass substrates. The prepared carbon nano- powder was collected from chamber and purified with nitric acid at 323K .The morphology and crystalline structure of the prepared powder was examined by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), and Scanning Electron Microscope (SEM). XRD spectrums showed that the powder exhibits amorphous structure and after purification, the powder showed hexagonal structure with a preferential orientation along(002) direction ,where AFM and SEM gave very compatible estimation on the grain size and shape of the nanopowder.

View Publication Preview PDF
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Study the Band Energy Structure and Absorption Coefficient for PbSe Thin Films

The PbSe alloy was prepared in evacuated quarts tubs by the method of melt quenching from element, the PbSe thin films prepared by thermal evaporation method and deposited at different substrate temperature (Ts) =R.T ,373 and 473K . The thin films that deposited at room temperature (R.T=303)K was annealed at temperature, Ta= R.T, 373 and 473K . By depended on D.C conductivity measurements calculated the density of state (DOS), The density of extended state N(Eext) increases with increasing the Ts and Ta, while the density of localized state N(Eloc) is decreased . We investigated the absorption coefficient (?) that measurement from reflection and transmission spectrum result, and the effect of Ts and Ta on it , also we calculated the tai

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on Solar Air Heating

Abstract

 

A new type of solar air heater was designed, fabricated, and tested in Baghdad, Iraq winter conditions. The heater consists of two main parts. The horizontal section was filled with the black colored iron chip while the vertical part has five pipes filled with Iraqi paraffin wax. A fan was fixed at the exit of the air. Two cases were studied: when the air moved by natural convection and when forced convection moved it. The studied air heater has proven its effectiveness as it heated the air passing through it to high temperatures. The results manifest that using little air movement makes the temperatures, stored energies, and efficiencies of the two studied cases converge

... Show More
Crossref (6)
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Study of Thermophysical Properties of TiO2 Nanofluid

Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction

... Show More
View Publication Preview PDF