An experimental study is made here to investigate the discharge coefficient for contracted rectangular Sharp crested weirs. Three Models are used, each with different weir width to flume width ratios (0.333, 0.5, and 0.666). The experimental work is conducted in a standard flume with high-precision head and flow measuring devices. Results are used to find a dimensionless equation for the discharge coefficient variation with geometrical, flow, and fluid properties. These are the ratio of the total head to the weir height, the ratio of the contracted weir width to the flume width, the ratio of the total head to the contracted width, and Reynolds and Weber numbers. Results show that the relationship between the discharge coefficient and these variables is a non-linear power function with a determination coefficient of 0.97. The importance and normalized importance analysis show that 56.3 % of the discharge coefficient variation is explained by the head-to-contracted width of the weir ratio followed by lower effects of the other variables, namely 16.5, 13.7, 12.4, and 1.2 % for contracted width to flume width ratio, Reynolds number, the head to the contracted width ratio, and Weber, respectively. The effect of the Weber number on the discharge coefficient is much lower than that of the Reynolds number.
Numerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (
The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky the
... Show MoreConjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross
... Show MoreThe laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.
In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.
... Show MoreCement is a major component in oil and gas drilling operations that is used to maintain the integrity of boreholes by preventing the movement of formation fluids through the annular space and outside the casing. In 2019, Iraq National Oil Company ordered all international oil and gas companies which are working in Iraq to use Iraqi cement (made in Iraq) in all Iraqi oil fields; however, the X-ray fluorescence (XRF) and compressive strength results in this study show that this cement is not matching with American Petroleum Institute (API) standards.
During this study, barolift was used to improve the properties of Iraqi cement used in oil wells at high pressure and high temperature (HPHT). Barolift (1 g) was added to cement admixt
... Show MoreA group of birds were passively immunized by a transfer factor extracted from lymphocytes sensitized to adenovirus and then they were challenged by the virulent virus (adenovirus isolated from hydropericardium infected birds). The results indicatede that the groups of birds that received the transfer factor or sensitized lymphocytes were protected from having any grossly pathological changes and having a high level of anti adenovirus antibodies.
A gliding arc discharge (GAD) with a water spray system was constructed. A non-thermal plasma, generated between two V shaped electrodes in an ambient argon driven by 100 Hz AC voltage, was investigated using optical emission spectroscopy (OES) with different gas flow rates (0.5, 1, 1.5, 2 , 2.5 , 3 1/min). Boltzmann plot method was used to calculate electron temperature (Te) and electron density (ne). The electrodes design was spectrally recognized and its Te value was about 0.588-0.863 eV, while the ne value of 6.875×1017-10.938×1017 cm-3. The results of the plasma diagnostics generated by gliding arc showed that increasing gas f
... Show MoreThe inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlati
... Show MoreSince the introduction of the HTTP/3, research has focused on evaluating its influences on the existing adaptive streaming over HTTP (HAS). Among these research, due to irrelevant transport protocols, the cross-protocol unfairness between the HAS over HTTP/3 (HAS/3) and HAS over HTTP/2 (HAS/2) has caught considerable attention. It has been found that the HAS/3 clients tend to request higher bitrates than the HAS/2 clients because the transport QUIC obtains higher bandwidth for its HAS/3 clients than the TCP for its HAS/2 clients. As the problem originates from the transport layer, it is likely that the server-based unfairness solutions can help the clients overcome such a problem. Therefore, in this paper, an experimental study of the se
... Show More