The effect of applied current on protection of carbon steel in 0.1N NaCl solution (pH=7) was investigated under flow conditions (0-0.262 m/s) for a range of temperatures (35-55°C) using rotating cylinder electrode. Various values of currents were applied to protect steel from corrosion, these were Iapp.=Icorr., Iapp.=2Icorr. and Iapp.=2.4Icorr. under stationary and flow conditions. Corrosion current was measured by weight loss method. The variation of protection potential with time and rotation velocity at various applied currents was assessed. It is found that the corrosion rate of carbon steel increases with rotation velocity and
has unstable trend with temperature. The protection current required varies with temperature and it increases considerably when the rotation velocity was increased. The protection potential decreases appreciably (shifts to more negative) with time and with increasing rotation velocity. Also it shifts to more positive with increasing temperature.
A demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b
... Show MoreThe driving idea for the present work was to combine the effect of polyvinyl alcohol (PVA) as corrosion inhibitor with the distance between the anodic and cathodic elements of the galvanic cell, beside their area ratio, in scope of synergistic suppression of galvanic corrosion on Cu/Fe model couple, using weight loss method. The performance affecting galvanic corrosion process has been tested for three major factors affect the process:
1. Four PVA inhibitor concentrations were selected to be (0, 1000, 4000 and 7000 ppm) in simulated cooling water.
2. Two cathode: anode area ratios as 1:1 and 2.4:1.
3. Two distances apart cathode – anode as 3 and 7 cm.
Maximum corrosion inhibition achieved was 86% which indicates that increa

Viscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
An electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreThe research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.