Preferred Language
Articles
/
ohcwdo8BVTCNdQwCFXjW
Spectrophotometric Determination of Nifedipine in Pharmaceutical Tablets Using Batch and Flow Injection Method Via Diazotization Coupling Reaction
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Sep 02 2012
Journal Name
Baghdad Science Journal
Batch and Flow-Injection Spectrophotometric Determination of Procaine HCl in Pharmaceutical Preparations Via Using Diazotization and Coupling Reaction
...Show More Authors

Simple and sensitive batch and Flow-injection spectrophotometric methods for the determination of Procaine HCl in pure form and in injections were proposed. These methods were based on a diazotization reaction of procaine HCl with sodium nitrite and hydrochloric acid to form diazonium salt, which is coupled with chromatropic acid in alkaline medium to form an intense pink water-soluble dye that is stable and has a maximum absorption at 508 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 1-40 and 5-400 µg.ml-1 of Procaine HCl, with detection limits of 0.874 and 3.75 µg.ml-1 of Procaine HCl for batch and FIA methods respectively. The FIA average sample throughput was 70 h-1. A

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Spectrophotometric determination of metoclopramide hydrochloride in pharmaceutical tablets, by diazotization-coupling method with 1-naphthol as the coupling agent
...Show More Authors

Simple, rapid and sensitive spectrophotometric method was proposed for the analysis of metoclopramide hydrochloride (MPH) in pure form as well as in pharmaceutical tablets. The method is based on the diazotization reaction of MPH with sodium nitrite in hydrochloric acid medium to form diazonium salt, which is coupled with 1-naphthol in sodium hydroxide medium to form azo dye, showing absorption maxima at 550 nm. Beer’s law is obeyed in the concentration range of 0.4 – 18 µg mL-1 of MPH with detection limit 0.5448 µg mL-1. The molar absorptivity and Sandell’s sensitivity are 3.4969 × 104 L mol-1 cm-1 and 0.0101 µg cm-2, respectively. The method was successfully applied to the determination of MPH in pharmaceutical tablets with

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Determination of Cefotaxime via Diazotization Reaction in Pure and Pharmaceutical Samples
...Show More Authors

      An accurate and sensitive spectrophotometric method has been developed for the determination of cefotaxime (CEF) in pure and pharmaceutical samples. The suggested method depended on the coupling reaction between diazotized cefotaxime and 3,5-dimethyl phenol (3,5-DMPH) in basic medium to form light orange, water soluble dye, that is stable and has a maximum absorbance at 497nm. The calibration graph was liner over the concentration range (1-70) µg.mL-1 with LOD of 0.750 µg.mL-1 and LOQ of. 2.740 µg. mL-1, sandal sensitivity of 0.0526 µg. cm-2 . molar absorptivity 11328 Lmol-1 cm-1 . The stoichiometry composition was found by Jobs a

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Batch and flow injection spectrophotometric methods for determination of Ceftazidime in pharmaceutical formulations
...Show More Authors

It is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations.  The methods  are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown  and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from  (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 23 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Flow Injection Spectrophotometric Technique for Determining of Genistein in Pure and Supplements Formulations Through Diazotization Coupling Reaction
...Show More Authors

Genistein (GEN) is The major isoflavone found in soybeans, has a number of cardiovascular health benefits, Postmenopausal syndrome and osteoporosis. A direct flow injection analysis method for estimation of (GEN) in pure and supplements formulation . This system is based on diazotization coupling reactions between procaine penciline (PR) and genistein in basic medium, they formed yellow dyes have maximum absorption at 416 nm. Calibration curve were constructed over different GEN concentrations, linearity for GEN was 10-100 µg.mL-1 and detection limits of 1.51 ?g/mL. In the FIA technique, all analytical factors were analyzed and optimized. The established method was successfully used to determine GEN in the formulations of its supplement

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 05 2018
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Spectrophotometric Determination of Chlordiazepoxide in Pharmaceutical Formulations via Oxidative Coupling Reaction with Phenothiazine
...Show More Authors

Abstract

A sensitive, precise and reliable indirect spectrophotometric method for the determination of chlordiazepoxide (CDE) in pure and pharmaceutical dosage forms is described. The method is based on oxidative coupling reaction between amino group resulting from acidic decomposition of CDE with phenothiazine in the presence of sodium periodate to produce an intense green soluble dye that is stable and shows a maximum absorption at 602 nm. The calibration plot indicates that Beer’s law is obeyed over the concentration range of 0.1?50 µg/mL, with a molar absorptivity of 1×104 L/mol cm and correlation coefficient of 0.9994.All the conditions that affecting on the stability and sensitivity of the fo

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Spectrophotometric Determination of Bisacodyl in Pure and Pharmaceutical Preparation via Oxidative Coupling Organic Reaction
...Show More Authors

A simple, accurate and sensitive spectrophotometric way is used to determine Bisacodyl in pure and pharmaceutical preparations. The proposed method depends on using 2,4-Dinitrophenylhydrazine as chromogenic reagent . The method was based on the oxidative coupling reaction of Bisacodyl with 2,4-Dinitrophenylhydrazine with Sodium periodate in the presence of sodium hydroxide as alkaline media to form red water soluble dye product , that has a maximum absorption at ?max 522nm . Beer ,s law is obeyed in the concentration of (2.00–20.00) ?g.ml -1 .The molar absorptivity is (6505) L.mol-1.cm-1,a sandall sensitivity of(0.0555) ?g.cm-2), correlation coefficient of (0.9970) , Limitof detection (LOD) (0.0312 ?g.ml-1), limit of Quantitation (LOQ) (

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Karbala International Journal Of Modern Science
Batch and flow injection spectrophotometric methods for the determination of barbituric acid in aqueous samples via oxidative coupling with 4-aminoantipyrine
...Show More Authors

A batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Thu Apr 25 2019
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
FLOW INJECTION ANALYSIS AND SPECTROPHOTOMETRIC DETERMINATION OF NIFEDIPINEIN PHARMACEUTICAL FORMULATION: FLOW INJECTION ANALYSIS AND SPECTROPHOTOMETRIC DETERMINATION OF NIFEDIPINEIN PHARMACEUTICAL FORMULATION
...Show More Authors

A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Analytical Chemistry
A Spectrophotometric Method for Tetracycline Determination in its Bulk Powder and Pharmaceutical Formulations Using Flow Injection and Batch Procedures: a Comparative Study
...Show More Authors

A reliable and environmental analytical method was developed for the direct determination of tetracycline using flow injection analysis (FIA) and batch procedures with spectrophotometric detection. The developed method is based on the reaction between a chromogenic reagent (vanadium (III) solution) and tetracycline at room temperature and in a neutral medium, resulting in the formation of an intense brown product that shows maximum absorption at 395 nm. The analytical conditions were improved by the application of experimental design. The proposed method was successfully used to analyze samples of commercial medications and verified throughout the concentration ranges of 25–250 and 3–25 µg/mL for both FIA and batch procedures, respecti

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref