Viscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
Viscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system
M D simulation of Imidazole aqueous solution at 298.15, 303.15 and 308.15 K was carried out by using OPLS force field from this simulation we calculate RDF of N-H… OH2 and N…HOH type of interactions, the results show that the hydration shell around N-H site at 5A0 decade with the increase of temperature and reformed at 10A0, so N site has two conserved hydration shells at approximate 4 and 6A0 respectively these are stable in this temperature range but the order and number of water molecules are varying with temperature specially the hydration shell at 4A0
Densities
ï² and viscosity
ï¨ of serine in 20, 40, and 60% (w/w) dimethyl sulfoxide (DMSO)-water mixtures were measured at 298.15, 303.15 and 308.15k. From these experimental data, apparent molal volume v ï¦ , limiting apparent molal volume v ï¦ o , the slop v S , transfer volume v ï¦ o(tr), Jones-Dole coefficients A and B were calculated. The results are
v ï¦ odiscussed the solute-solvent and solute-solute interaction, and showed that serine behaves as structure-breaker in aqueous DMSO solvent
Density data of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperatures (288.15, 293.15, 298.15) k have been used to estimate the apparent molar volume (Vθ), limiting apparent molar volume (Vθ˚) experimental slope (Sv) and the second derivative of limiting partial molar volume [δ2 θ v° /δ T2] p .The viscosity data have been analyzed by means of Jones –Dole equation to obtain coefficient A, and Jones – Dole coefficient B, Free activation energy of activation per mole of solvent, Δμ10* solute, Δμ20* the activation enthalpy ΔH*,and entropy, ΔS*of activation of viscous flow. These results have been discussed
... Show MoreMolar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equa
... Show MoreMolar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equation and Ostwald law was reaso
... Show More