Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
The current study was designed to investigate the alterations in the ultrastructure of orgenelles and cellular activity of exocrine pancreatic acini of experimentally induced-diabetic rats and to assess the usefulness of herbal combination supplementation in improving the ultrastructure and cellular activity of exocrine pancreas. The number of albino male rats used were 24 which divided into equally 4 groups; group I: control group, group II: alloxan-induced diabetes mellitus (single intraperitoneal dose of alloxan 120 mg/kg for 3 days), group III: herbal combination treatment composed from the extracts of fenugreek seeds (Trigonella foenum-graecum), black cumin (Nigella sativa) seeds, rhizomes
... Show MoreThis paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
In this work the diode planer magnetron sputtering device was
designed and fabricated. This device consists of two aluminum discs
(8cm) diameter and (5mm) thick. The distance between the two
electrodes is 2cm, 3cm, 4cm and 5cm.
Design and construction a double probe of tungsten wire with
(0.1mm) diameter and (1.2mm) length has been done to investigate
electron temperature, electron and ion density under different
distances between cathode and anode. The probes were situated in
the center of plasma between anode and cathode.
The results of this work show that, when the distance between
cathode and anode increased, the electron temperature decreased.
Also, the electron density increases with the increasing
The problems of cultural displacement and a shaky sense of one's own identity
have been the main concern of the twentieth century Caribbean writer, Jean Rhys. As
a white Creole writer living in England, Rhys attempts to capture the ambivalence of
what it means to be caught between two cultures and never able to identify fully with
any one .Born to a Welsh father and a Creole(white West Indian) mother on the island
of Dominica in the West Indies, Jean Rhys was white but not English, West Indian but
not black. Her sense of belonging to the West Indies was necessarily charged with
awareness of being part of another culture. Thus, the ambiguity of being an
insider/outsider in both the metropolis, England, and the colo
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreDiyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient