Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreThe current study was designed to investigate the alterations in the ultrastructure of orgenelles and cellular activity of exocrine pancreatic acini of experimentally induced-diabetic rats and to assess the usefulness of herbal combination supplementation in improving the ultrastructure and cellular activity of exocrine pancreas. The number of albino male rats used were 24 which divided into equally 4 groups; group I: control group, group II: alloxan-induced diabetes mellitus (single intraperitoneal dose of alloxan 120 mg/kg for 3 days), group III: herbal combination treatment composed from the extracts of fenugreek seeds (Trigonella foenum-graecum), black cumin (Nigella sativa) seeds, rhizomes
... Show MoreObjectives: This study aims to determine the disease’s patterns and outcomes of admission among neonates hospitalized at the neonatal care unit in Erbil City, and using the findings as a baseline for neonate’s morbidity and mortality assessment in the future. Methodology: A retrospective study carried out at neonatal care unit of Raparin pediatric teaching hospital. An instrument for data collection developed by researcher included (age, gender, cause of admission, diagnosis and outcome upon discharge and causes of death). Content validity of the instrument was determined through the use of panel ex
Erbil city is located in the northern Iraq with a population of over one million people. Due to water crises farmers usually use wastewater and well water for the agricultural production. In this study six stations were designed to sample waste water and three from well water to define waste water and ground water characteristics. In this study, Residual Na+ Carbonate, Mg++ hazard, salinity hazard, Kelley index, %sodium, total hardness, permeability index, potential salinity, sodium adsorption ratio, and Irrigation Water Quality Index (IWQI) were determined. The order of average cation concentrations in water was Mg2+> Ca2+ > Na+ > K+. While the proportion of main
... Show MoreIn this study, phytoplankton density, chlorophyll-a, and selected physico- chemical parameters were investigated in Erbil wastewater channel. The surveys were carried out monthly from May 2003 to April 2004. Samplings were established on three sites from headwaters to the mouth. The results showed that pH was in alkaline side of neutrality, with significant differences (P<0.05) between sites 1 and 3. TSS concentration decreased from site 1 toward site 2 (mean value, 80.15 to 25.79 mg.l-1). A clear gradual increase in mineral content (TDS) observed from site one of the channel towards the mouthpart. Soluble reactive phosphate has a concentration maximum mean value reached 48.4 µg.l-1 which is recorded in site 2. A high positive relat
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.