Soil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). The soil improvement techniques were investigated by injecting a low-pressure mixture of water and ordinary Portland cement (O.P.C.) with (0.8, 1, and 1.3) W/C ratios. The study revealed the relationship between pile model samples (U.C.Ts.) and W/C ratios. It also showed that the pile model samples' (U.C.Ts.) result decreased from 14 to 12 to 10 MPa, respectively, with an increase in W/C ratios from 0.8 to 1 and 1.3, respectively. Furthermore, the stiffness characteristics of a jet grouting column were calculated based on Mohr's Circles theory, and numerous theoretical approaches obtained the consequences of tensile strength.
تعد صناعة السمنت في العراق من اقدم الصناعات الحديثة واكثرها تطورا وتقدما ومن اقواها تاثيرا في الاقتصاد القومي. واذ توفر في صناعة السمنت العراقي كافة المستلزمات الناجحة من حيث توفر المواد الاولية والخبرات الفنية والتقنية واسواق ثابتة وراسخة محليا وعالميا فقد كان من المفروض ان يتم التوسع في هذه الصناعة، وان التخطيط لهذه الصناعة امرا ضروريا خاصة وان مادة السمنت هي احدى اهم المواد الرئيسة التي يؤثر توفره
... Show MoreMany problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying capacity of piled raft
... Show MoreMany problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying ca
... Show MoreIn this study, titanium dioxide (TiO2) nanoparticles incorporated with cement were synthesis by a simple casting method as a function concentration of TiO2 (0.2, 0.4, 0.8, 1, and 2 wt%). The prepared samples were characterized using the technique of Field Emission Scanning Electron Microscope (FESEM) and UV-Visible spectrophotometer, which was used to measure the adsorption spectra. The observed photocatalytic efficiency of TiO2 nanoparticles (NP) incorporated with cement was investigated by decomposing the dye methyl blue (MB) solution under sunlight irradiation. According to the slope, the value of the k constant at the best sample is 0.8wt%, k=0.8265 min-1. FESEM image of the TiO2
... Show MoreThe most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method).
This study involves adding nano materials and interaction with cement mortar behavior for several mortar samples under variable curing time with constant water to cement ratio (W/C = 0.5). The effects of adding nano materials on the microstructure of cement mortar were studied by (Scanning Electronic Microscopy (SEM) and X-Ray (for samples at different curing time 28 and 91 days. Small ratio replacements of nano particles (SiO2 or Al2O3) were added to Ordinary Portland Cement (OPC) type (I). The percentage of nano materials additives replacement by weight of ordinary Portland cement includes (1, 2, 3, 4 and 5%) for both types of nano materials with constant (W/C) ratio, also the amount of the fin
... Show MoreThis study focuses on the biodegradation of oxymatrine insecticide by some soil fungi isolated from four agriculture stations. The results showed that the highest degradation rate 94.66% was recorded by Ulocladium sp. at 10 days and A. niger recorded the lowest degradation rate 45.86%, while at 20 days Ulocladium sp. also showed the highest degradation rate 94.98% and the lowest degradation rate reached to 82.49% with A.niger. The mix (Exerohilum sp.+Ulocladium sp.) recorded the highest degradation rate of oxymatrine insecticide 90.22%, 88.51%, 85.34% at 4, 8 and 12 ppm.The use of mixed isolates enhanced the biodegradation process. There is no study of oxymatrine biodegradation
... Show MoreOne of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreThe deposition process and investigation of the physical properties of tungsten trioxide (WO3) thin films before and after gamma irradiation are presented in this paper. The WO3 thin films were deposited, using the pulse laser deposition technique, on glass substrates at laser energies of 600mJ and 800mJ. After deposition, the samples were gamma irradiated with Co60. The structural and optical properties of polycrystalline WO3 thin films are presented and discussed before and after 5kGy gamma irradiation at the two laser energies. X-ray diffraction spectra revealed that all the films consisted of WO3 crystallized in the triclinic form; the dislocation density and lattice strain increased with the absorbed dosage of gamma
... Show More