Preferred Language
Articles
/
jih-542
Time Series Forecasting by Using Box-Jenkins Models
...Show More Authors

    In this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving average”. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Int. J. Agricult.
FORECASTING THE EXCHANGE RATES OF THE US DOLLAR AGAINST THE IRAQI DINAR USING THE BOX-JENKINS METHODOLOGY IN TIME SERIES WITH PRACTICAL APPLICATION
...Show More Authors

The goal of the study is to discover the best model for forecasting the exchange rate of the US dollar against the Iraqi dinar by analyzing time series using the Box Jenkis approach, which is one of the most significant subjects in the statistical sciences employed in the analysis. The exchange rate of the dollar is considered one of the most important determinants of the relative level of the health of the country's economy. It is considered the most watched, analyzed and manipulated measure by the government. There are factors affecting in determining the exchange rate, the most important of which are the amount of money, interest rate and local inflation global balance of payments. The data for the research that represents the exchange r

... Show More
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Intelligent Systems And Computing
Forecasting by Using the Optimal Time Series Method
...Show More Authors

View Publication
Scopus (15)
Crossref (5)
Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Modeling and Forecasting Periodic Time Series data with Fourier Autoregressive Model
...Show More Authors

Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagn

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Structural Time Series for Forecasting Oil Prices
...Show More Authors

There are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using the Box Jenkins models to predict Iraq's cement production and to demonstrate its adequacy under future construction projects
...Show More Authors

تعد صناعة السمنت في العراق من اقدم الصناعات الحديثة واكثرها تطورا وتقدما ومن اقواها تاثيرا في الاقتصاد القومي. واذ توفر في صناعة السمنت العراقي كافة المستلزمات الناجحة من حيث توفر المواد الاولية والخبرات الفنية والتقنية واسواق ثابتة وراسخة محليا وعالميا فقد كان من المفروض ان يتم التوسع في هذه الصناعة، وان التخطيط لهذه الصناعة امرا ضروريا خاصة وان مادة السمنت هي احدى اهم المواد الرئيسة التي يؤثر توفره

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Box and Jenkins use models to predict the numbers of patients with hepatitis Alvairose in Iraq
...Show More Authors

The time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound

The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.

Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
Mixing ARMA Models with EGARCH Models and Using it in Modeling and Analyzing the Time Series of Temperature
...Show More Authors

In this article our goal is mixing ARMA models with EGARCH models and composing a mixed model ARMA(R,M)-EGARCH(Q,P) with two steps, the first step includes modeling the data series by using EGARCH model alone interspersed with steps of detecting the heteroscedasticity effect and estimating  the model's parameters and check the adequacy of the model. Also we are predicting the conditional variance and verifying it's convergence to the unconditional variance value. The second step includes mixing ARMA with EGARCH and using the mixed (composite) model in modeling time series data and predict future values then asses the prediction ability of the proposed model by using prediction error criterions.

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (2)
Scopus Crossref