Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses. The proposed method uses local feature of fingerprint represented by minutiae positions to overcome the problem of repeated key to perform encryption and decryption of a text message, where, the message will be ciphered by a modified Vigenère method. Unlike the old usual method, the key constructed from fingerprint minutiae depend on instantaneous date and time of ciphertext generation. The Vigenère table consist of 95 elements: case sensitive letters, numbers, symbols and punctuation. The simulation results (with MATLAB 2021b) show that the original message cannot be reconstructed without the presence of the key which is a function of the date and time of generation. Where 720 different keys can be generated per day which mean 1440 distinct ciphertexts can be obtained for the same message daily.
the regional and spatial dimension of development planning must be taken as a point of departure to the mutual of the spatial structure of the economy , development strategy and policies applied 'therein such as the location principles and regional development coordination of the territorial problems with the national development planning and timing of regional vis-a-vis national development plan_. Certain balance and integration is of sound necessity' between national _regional and local development objectives through which the national development strategy should have to represent the guidelines of the local development aspirations and goals. The economic development exerts an impact on the spatial evolution, being itself subje
... Show MoreIn the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIt is shown that if a subset of a topological space (χ, τ) is δ-semi.closed, then it is semi.closed. By use this fact, we introduce the concept regularity of a topological space (χ, τ) via δ-semi.open sets. Many properties and results were investigated and studied. In addition we study some maps that preserve the δ-semi.regularity of spaces.
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.
in this paper the notion of threshold relations by using resemblance relation are introduced to get a similarity relation from a resemnblance relation R