The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to reuse the brick coarse aggregate ACB and PB powder brick as substitute materials for producing concrete blocks, use the water spray method to treat concrete building blocks (blocks) and check the Dimensions and compressive strength, and absorption.
Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
S a mples of compact magnesia and alumina were evaporated
using CO2-laser .The
Processed powders were characterized by electron microscopy
and both scanning and transmission electron microscope. The results
indicated that the particle size for both powders have reduced largely
to 0.003 nm and 0.07 nm for MgO and Al2O3, with increasing in
shape sphericity.
In this study, oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as an oxidant was studied, whereas the catalyst used was zirconium oxide supported on Activated carbon (AC). Zirconium oxide (ZrO2) was impregnated over prepared activated carbon (AC) and characterized by various techniques such as XRD, FTIR, BET, SEM, and EDX. This composite was used as a heterogeneous catalyst for oxidation desulfurization of simulated oil. The results of this study showed that ZrO2/AC composite exhibited significant catalytic activity and stability, effectively lowering sulfur content under mild conditions. Factors such as reaction temperature (30, 40, 50, 60°C), time (5, 10, 15,20,30,60, 80 100 min), catalyst dose (0.3, 0.5,
... Show MoreThe present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials. Good agreement between the average theoretical and measured cooli
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreIn this paper , concrete micro-piles were used to improve the bearing capacity of the soil which is supporting the shallow foundation by using groups of (4; 6 and 9)bored short micro-piles which have, (D=0.125m and D=0.1m), and length to diameter ratio (L/D) equal to (6; 10 and 12) respectively. To calculate the bearing capacity of the micro-piles,(Tomlinson) and (Lamda) methods were used; also the soil properties were taken from Al-Muthana airport,(Al-Qyssi,2001) [1]. The results show that; increasing the number of piles and/ or the diameters and lengths; and the interaction between the bearing capacity of the shallow foundation with the bearing capacity of the pile group which leads to increasing the strength against the external loads
... Show MoreAs a result of the growth of economic, demographic and building activities in Iraq, that necessitates carrying out geotechnical investigations for the dune sand to study behavior of footings resting on these soils. To determine these properties and to assess the suitability of these materials for resting shallow foundation on it, an extensive laboratory testing program was carried out. Chemical tests were carried out to evaluate any possible effects of the mineralogical composition of the soil on behavior of foundation rested on dune sands.
Collapse tests were also conducted to trace any collapse potential. Loading tests were carried out for optimum water content and different shapes of footing. Loading test recommends manufacturing o
The bearing capacity of layered soil studies was carried out with various approaches such as experimental, theoretical, numerical, and combination of them. This work is focused on the settlement and bearing capacity of shallow foundations subjected to the vertical load placed on the surface of layered soils. The experimental part was performed by manufacturing soil cubic container (570 mm x 570 mm x 570 mm). A model square footing of width 60 mm was placed at the surface of the soil bed. The relative density of sand was constant at 60%, and the clay was prepared with a density of 19.2 (kN/m3) and water content of 14.6%. PLAXIS 3D FEM was used to simulate the experimental tests and performing a parametric study. The results showed
... Show MoreThe increase in obesity and the many accompanying diseases is attributed to the increased production and consumption of foods made of non-nutritive sweeteners without regard to the risks of consuming additional calories, and this in turn leads to hormonal imbalance and metabolic disorders and the resulting imbalance and ill health that have spread to all segments of society. During the research, 0.01, 0.02, 0.03, 0.04 and 0.05 % of stevia sweetener was added to the cream instead of the sugar used. Physical and chemical tests were performed for the stevia extract and the microbial content in the cream, as well as the sensory evaluation. It was noted that fortifying the cream with calorie-free stevia sugar led to the production of
... Show MorePermeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.
A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u
... Show More