Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods show that extrapolated density measurement used an average for the real density. The gradient of an extrapolated method is much better in shallow depth into the vertical stress calculations. The Miller density method had an excellent fit with the real density in deep depth. It has been crucial to calculate vertical stress for the past 40 years because calculating pore pressure and geomechanical building models have employed vertical stress as input. The strongest predictor of vertical stress may have been bulk density. According to these results, the miller and extrapolated techniques may be the best two methods for determining vertical stress. Still, the gradient of an extrapolated method is much more excellent in shallow depth than the miller method. Extrapolated density approach may produce satisfactory results for vertical stress, while miller values are lower than those obtained by extrapolating. This may be due to the poor gradient of this method at shallow depths. Gardner's approach incorrectly displays minimum values of about 4000 psi at great depths. While other methods provide numbers that are similar because these methods use constant bulk density values that start at the surface and continue to the desired depth, this is incorrect.
Objective(s): to determine the effectiveness of instruction intervention upon multipara women's practices to
control stress incontinence.
Methodology: A quasi-experimental study was carried out from (2nd) April, 2010 to 15th June, 2010. Nonprobability
(purposive sample) of (60) multiparous women was selected from Baghdad Teaching Hospital and AlElwia
Maternity Teaching Hospital in Baghdad city, the sample was divided into two groups (30) women were
considered as a study group, and another (30) were considered as the control group. An instructional intervention
was applied on the study group, while the intervention was not applied on control group. A questionnaire was
resolve as a tool of data collection to suit the p
Laurylamine hydrochloride CH3(CH2)11 NH3 – Cl has been chosen from cationic surfactants to produce secondary oil using lab. model shown in fig. (1). The relationship between interfacial tension and (temperature, salinity and solution concentration) have been studied as shown in fig. (2, 3, 4) respectively. The optimum values of these three variables are taken (those values that give the lowest interfacial tension). Saturation, permeability and porosity are measured in the lab. The primary oil recovery was displaced by water injection until no more oil can be obtained, then laurylamine chloride is injected as a secondary oil recovery. The total oil recovery is 96.6% or 88.8% of the residual oil has been recovered by this technique as shown
... Show Moreناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show MoreOne of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta
... Show MoreThis study focuses on the use of an optimum amount of Sodium Polyacrylate (SP) for designing cement slurry with the high performance of rheological properties and displacement efficiency. A laboratory study has been carried out on the cement slurry which prepared with SP as superabsorbent polymer. SP has been providing an internal water source that helps in the hydration process, and curing and ultimately increases the cement strength. Also improves the cement performance by improving the cement stability. Several batches were prepared to determine the proper amount of SP to add it in the cement slurry. Also, we studied its effect on cement density, amount of free water in order to observe the rheological properties, and thickening time.
... Show MoreNatural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreThe petroleum industry, which is one of the pillars of the national economy, has the potential to generate vast wealth and employment possibilities. The transportation of petroleum products is complicated and changeable because of the hazards caused by the corrosion consequences. Hazardous chemical leaks caused by natural disasters may harm the environment, resulting in significant economic losses. It significantly threatens the aim for sustainable development. When a result, determining the likelihood of leakage and the potential for environmental harm, it becomes a top priority for decision-makers as they develop maintenance plans. This study aims to provide an in-depth understanding of the risks associated with oil and gas pipeli
... Show MoreA series of overbased magnesium fatty acids such as caprylate, caprate, laurate, myristate, palmitate, stearate and oleate) were synthesized by the reaction of the fatty acids with active – 60 magnesium oxide and carbon dioxide (CO2) gas at 60 oC in the presence of ammonia solution as catalyst, toluene / ethanol solvent mixture (9:1vol/vol) was added.
The prepared detergent additives were characterized by FTIR, 1HNMR and evaluated by blending each additive in various concentrations with medium lubricant oil fraction (60 stock) supplied by Iraqi Midland Refineries Company. The total base number (TBN, mg of KOH/g) was determined, and the results of TBN were treated by using two-way analysis of variance (ANOVA) test. It was found that
In this study, a new type of circulating three-phase fluidized bed reactor was conducted by adding a spiral path and was named as spiral three-phase fluidized bed reactor (TPFB-S) to investigate the possibility for removing engine oil (virgin and waste form) from synthetic wastewater by using Ricinus communis (RC) leaves natural and activated by KOH. The biosorption process was conducted by changing particle diameter in the range 150–300 and 300–600 µm, liquid flow rate in the range 2.5–4.5 L/min and gas flow rate in range of 0–1 L/min, while other parameters initial oil emulsion concentration, pH, adsorbent concentration, agitation speed and contact time were kept constant at 2000 mg/L, 2,