Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Pro-inflammatory cytokines play an important role in intercellular communications. In the last two decades, many cytokines have been identified in human milk. These cytokines are variable according to different conditions such as pathogenic infections which strongly stimulated the immune response. The present study aims to determine of IL1β and TNF-α in Toxoplasma gondii-free and infected women in an attempt to clarify the impacts of the infections on cytokines especially in mother's milk. The serum and milk sample were collected from 96 samples (48 for seropositive and 48 for seronegative). To confirm the Toxoplasma gondii infection; enzyme linked immunofluorescence assay (ELIFA) was used to detect anti-Toxoplasma Ig
... Show MoreOrganizations must interact with the environment around them, so the environment must be suitable for that interaction. These companies are now trying to become Learning Organizations because it try to face that challenges may rise from its environments. The Learning Organization is a concept that is becoming an increasingly widespread philosophy in modern companies, from the largest multinationals to the smallest ventures. What is achieved by this philosophy depends considerably on one's interpretation of it and commitment to it. This study gives a definition that we felt was the true ideology behind the Learning Organization and Group Working. A Learning Organization is one in which people at all levels
... Show MoreA fixed firefighting system is a key component of fire safeguarding and reducing fire danger. It is installed as a permanent component in a structure to protect the entire or a portion of the building and its contents. The study aims to review the previous studies that deal with the evaluation of fire safety measures and their use in resolving problems associated with fire threats in buildings. For this reason, a number of previous studies in this field were reviewed compared with the NFPA code. The findings revealed that regulatory developments over the last several decades had created an atmosphere conducive to innovation. This has resulted in a growth in the number of fixed firefighting system types now obtainable. Th
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThe applications of Multilevel Converter (MLC) are increased because of the huge demand for clean power; especially these types of converters are compatible with the renewable energy sources. In addition, these new types of converters have the capability of high voltage and high power operation. A Nine-level converter in three modes of implementation; Diode Clamped-MLC (DC-MLC), Capacitor Clamped-MLC (CC-MLC), and the Modular Structured-MLC (MS-MLC) are analyzed and simulated in this paper. Various types of Multicarrier Modulation Techniques (MMTs) (Level shifted (LS), and Phase shifted (PS)) are used for operating the proposed Nine level - MLCs. Matlab/Simulink environment is used for the simulation, extracting, and ana
... Show MoreThe Electrocardiogram records the heart's electrical signals. It is a practice; a painless diagnostic procedure used to rapidly diagnose and monitor heart problems. The ECG is an easy, noninvasive method for diagnosing various common heart conditions. Due to its unique advantages that other humans do not share, in addition to the fact that the heart's electrical activity may be easily detected from the body's surface, security is another area of concern. On this basis, it has become apparent that there are essential steps of pre-processing to deal with data of an electrical nature, signals, and prepare them for use in Biometric systems. Since it depends on the structure and function of the heart, it can be utilized as a biometric attribute
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreAir pollution refers to the release of pollutants into the air that are detrimental to human health and the planet as a whole.In this research, the air pollutants concentration measurements such as Total Suspended Particles(TSP), Carbon Monoxides(CO),Carbon Dioxide (CO2) and meteorological parameters including temperature (T), relative humidity (RH) and wind speed & direction were conducted in Baghdad city by several stations measuring numbered (22) stations located in different regions, and were classified into (industrial, commercial and residential) stations. Using Arc-GIS program ( spatial Analyses), different maps have been prepared for the distribution of different pollutant