Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Epilepsy is considered as one of the common neurological disorders.About 50 million persons have affected by epilepsy .Carbamazepine is one of the common drugs used by pregnant women with epilepsy. The aim of the present study is to investigate the effect of carbamazepine on the process of brain development during day 13 of pregnancy.Fifty pregnant albino mice have been used. They were divided into two groups. The control group that had been orally drenched with normal saline. The other group was treated group that had been given 15 mgKg of Carbamazepine orally. The fetuses have been collected after killing of the mice. Boun’s solution was selected as fixative. 5-8 µm thick sections from the fetuses were cut to be stained with hematoxyli
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The effective application of the method of measuring and evaluating performance according to the Balanced Scorecard the need for an information system a comprehensive and integrated for internal and external environment, Which requires the need to develop accounting information system in general and cost management information systems to suit the particular requirements of the environment in terms of the development of modern methods of measurement to include the use of some methods that have proven effective in measuring and evaluating performance.
The research problem in need of management to develop methods of measuring and evaluating performance through the use of both financial measures and non
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreThe current study included a review of the registration and description of the Theretra alecto Boi, 1827 (Levant hawk moth), samples were collected from various areas of the Baghdad belt and the provinces of the Middle Euphrates, confirmation in the description was on the most important parts of the body included the head and it's appendages, pronotum, wings as well as male and female genitalia. The morphological characteristics under study were enhanced by illustrations and images. Information on the locations and date of the collection was also confirmed. This study aims to identify the most important characteristics of the diagnosis of the species and the review of appearance variations, especially the analytical style of wings, coupling
... Show MoreActive Learning And Creative Thinking
Primary hypogonadism combined with Müllerian hypoplasia and partial alopecia are common features of this syndrome, which was reported only in four earlier families from areas where consanguineous marriage is prevalent. An autosomal recessive pattern of inheritance was suggested earlier and is supported by this report.