Preferred Language
Articles
/
joe-1609
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams.

Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2026
Journal Name
Journal Of Baghdad College Of Dentistry
An evaluation of the influence of different finishing lines on the fracture strength of full contour zirconia CAD/CAM and heat press all-ceramic crowns
...Show More Authors

ABSTRACT Background: One of the major problems of all ceramic restorations is their probable fracture against the occlusal forces. The objective of this in vitro study was to evaluate the effect of two gingival finishing lines (90°shoulder and deep chamfer) on the fracture resistance of full contour CAD/CAM and heat press all-ceramic crowns. Materials and Methods: Thirty two maxillary first premolars were prepared to receive full contour CAD/CAM (zolid) and heat press (Cergo Kiss) ceramic crowns using a special paralleling device (Parallel-A-Prep). The teeth were divided into four groups according to the type of finishing line prepared. Each crown was cemented to its corresponding tooth using self-etch, self-adhesive dual cure resin ceme

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Evaluation the Mechanical Properties of Kaolin Particulate Reinforced Epoxy Composites
...Show More Authors

Epoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 11 2009
Journal Name
Journal Of Kerbala University
Evaluation The Behaviour of Reinforced Loose Sand under Inclined Loading
...Show More Authors

Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
The Effects of Maximum Attapulgite Aggregate Size and Steel Fibers Content on Fresh and Some Mechanical Properties of Lightweight Self Compacting Concrete
...Show More Authors

The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Analytical Study of Bending Stresses and Deflections in Curved Beam Made of Laminated Composite Material
...Show More Authors

Abstract

 

Theoretical and experimental methodologies were assessed to test curved beam made of layered   composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
state selection of ammonia molecular beam using tapered ring focuser
...Show More Authors

I've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage

View Publication Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Frustrated total internal reflection of newton rings multiple beam interference
...Show More Authors

Frustrated Total Internal Reflection FTIR phenomenon is manifested employing Newton‟s rings setup generated via a coherent light beam of a laser diode ( . All concentric bright and dark rings, except the central bright spot, were noticed to recede (disappear) when the incident angle exceeded the critical angle of 41o.
It was also shown that the current setup has proven its applicability for other tests and can give convenient results that conform with theory. Neither the concept nor the design is beyond what can be realized in an undergraduate laboratory. However, technical improvements in mounting the prism - lens may be advisable. As an extension of the experiments, the effect can be studied using hollow prism filled with liquids

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Strengthening of RC Beam with Large Square Opening Using CFRP
...Show More Authors

The use of essential services in modern constructions, such pipes, and ducts, became important, placing these pipes and ducts underneath the soffit of the beam. They made a ceiling sandwich, and that causes to reduce the height of the floor, so the presence of the opening in the beam saves the height of the floor.  In this paper, the investigation of the beam response of reinforced concrete simply supported rectangle beams with square web openings is presented, including a number of the web openings (two, four, and eight), in addition to its use in strengthening the member at the openings (when the beam is planned before casting, internal deformation steel bar is used, and in case of the opening is existing in the b

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Thu May 01 2014
Journal Name
Engineering And Technology Journal
Relativistic Self-Focusing of Intense Laser Beam in Magnetized Plasma
...Show More Authors

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental & Theoretical Analysis of Composite (Polyester & Silicon-Carbide) Cantilever Beam
...Show More Authors

A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag

... Show More
View Publication Preview PDF