Preferred Language
Articles
/
joe-1560
Conjugate Heat Transfer of Laminar Air Flow in Rectangular Mini Channel
...Show More Authors

Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross-sectional dimensions. Taking the Reynolds number 800 for all cases. The results demonstrate that the conjugate conduction impact is observed at high conductivities and for large wall thicknesses in the studied materials. This impact flattened the wall temperature distribution along the channel wall instead of being an augmented linear profile. Also, it flattens the local Nusselt number due to the axial heat conduction along the walls. It reduces the effect of the entrance region of high Nusselt number while making the fluid temperature profile curved and redistributing the wall heat flux and accumulating it toward the leading edge. A decrease was observed in the average Nusselt number of 8% when increasing wall thickness from 1 mm to 50 mm for the same thermal conductivity of 10 W/m2C, while an increase in Nusselt number of 19% with thermal conductivity changes from 0.25 W/m2C to 10 W/m2C.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Rotation and Inclined Magnetic Field with Mixed Convective Heat and Mass Transfer in an Inclined Symmetric Channel on Peristaltic Flow with Slip Conditions
...Show More Authors

     In paper, we study the impact of the rotationn inclined magnetic felid and inclined symmetric channel with slip condition on peristaltic transport using incompressible non-Newtonian fluid. Slip conditions for the concentration and heat transfer are considered. We use the conditions on the fluid, namely infinite wavelength and low - Reynolds number to simplify the governed equations that described - motion flow, energy and concentration. These equations ofroblem are solved by the perturbation technique and restricted the number of Bingham to a small value to find the final expression of the stream function. The Bingham number, Brinkman number, Soret number, Dufour number, temperature, Hartman number and other parameters are teste

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Convection Heat Transfer Enhancement in Horizontal Channel Provided with Metal Foam Blocks
...Show More Authors

Convection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Effect of Oscillatory Motion in Enhancing the Natural Convection Heat Transfer from a Vertical Channel
...Show More Authors

This paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Study Effect of Central Rectangular Perforation on the Natural Convection Heat Transfer in an Inclined Heated Flat Plate
...Show More Authors

Anumerical solutions is presented to investigate the effect of inclination angle (θ) , perforation ratio (m) and wall temperature of the plate (Tw) on the heat transfer in natural convection from isothermal square flat plate up surface heated (with and without concentrated hole). The flat plate with dimensions of (128 mm) length × (64 mm) width has been used five with square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5). The values of angle of inclination were (0o, 15o 30o 45o 60o) from horizontal position and the values of wall temperature (50oC, 60 oC, 70 oC, 90 oC, 100o<

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Investigation of heat transfer phenomena and flow behavior around electronic chip
...Show More Authors

Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Theoretical Analysis of Concentric Flow of Spherical Capsule in Laminar Flow
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN TROMBE WALL CHANNEL
...Show More Authors

The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System
...Show More Authors

In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Effect of Magnetichydrodynamic on unsteady flow and heat transfer upon stretching sheet with non – uniform heat
...Show More Authors

In this paper we study the effect of magnetichydrodynamic upon the boundary
layer flow and heat transfer on a permeable unsteady stretching sheet with non –
uniform heat source / sink. It found that the momentum and energy equations are
controlled by many different dimensionless parameters such as prandtle number
pr , unsteadiness parameter A , constant pressure So , coefficient of the space
dependent  A , the temperature dependent  B , and the MHD parameter M . The
analytic solutions are obtained by using suitable similarity transformations and
homotopy analysis method (HAM).
Furthermore, we analysis the effects of all dimensionless number, there are
mentioned above, upon the velocity distribution and

... Show More
View Publication
Publication Date
Wed Jan 01 2014
Journal Name
Advances In Mechanical Engineering
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow
...Show More Authors

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo

... Show More
View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref