In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show MoreLead-free 0.88(Na0.5Bi0.5)TiO3–0.084(K0.5Bi0.5)TiO3–0.036BaTiO3 (BNT–BKT–BT) piezoelectric ceramics were prepared using the conventional mixed-oxide method with a sintering temperature range of 1120–1200 °C. The effect of the sintering temperature on the crystal structure, microstructure, and densification, as well as the dielectrics, piezoelectrics, and the pyroelectric properties of BNT–BKT–BT ceramics were investigated. Scanning electron microscopy and X-ray diffraction were used to study the microstructures of the sintered samples. The results showed that the increase in sintering temperature was very effective in improving both the density and electrical properties. However, the samples deteriorated when the sintering te
... Show MoreThis research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show MorePhase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of
A novel Schiff base (SB) ligand, abbreviated as HDMPM, resulted from the condensation of 2-amino-4-phenyl-5-methyl thiazole and 4-(diethylamino)salicyaldehyde, and its metal complexes with [Co(II), Cu(II), Ni(II), and Zn(II)] ions in high yield were formed. The physico-chemical techniques such as elemental analysis, molar conductance, IR, 1H and 13C NMR, mass spectroscopy, and electronic absorption studies were utilized to characterize the synthesized compounds. The studied compounds were examined for their possible anticancer activity against a number of human cancerous cell lines, including A549 lung carcinoma, HepG2 liver cancer, HCT116 colorectal cancer, and MCF-7 breast cancer cell lines, with doxorubicin serving as the standard. The s
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show More