Simultaneous and consecutive charging and discharging of a PCM-based domestic air heater with metal foam
...Show More Authors
The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreIn this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant
... Show MoreIn this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of
... Show MoreSteady natural and mixed convection flow in a square vented enclosure filled with water-saturated aluminum metal foam is numerically investigated. The left vertical wall is kept at constant temperature and the remaining walls are thermally insulated. Forced convection is imposed by providing an inlet at cavity bottom surface, and a vent at the top surface. Natural convection takes place due to the temperature difference inside the enclosure. Darcy-Brinkman-Forchheimer model for fluid flow and the two-equation of the local thermal non-equilibrium model for heat flow was adopted to describe the flow characteristics within the porous cavity. Numerical results are obtained for a wide range of width of the inlet as a fraction
... Show More