The flow measurements have increased importance in the last decades due to the shortage of water resources resulting from climate changes that request high control of the available water needed for different uses. The classical technique of open channel flow measurement by the integrating-float method was needed for measuring flow in different locations when there were no available modern devices for different reasons, such as the cost of devices. So, the use of classical techniques was taken place to solve the problem. The present study examines the integrating float method and defines the parameters affecting the acceleration of floating spheres in flowing water that was analyzed using experimental measurements. The method was investigated theoretically, as well as many experimental tests in a fixed floor laboratory flume were conducted. Different sizes of solid plastic spheres with different weights were used as floats to measure velocities and then discharge computation. The results indicate that the integrating-float technique is feasible and accurate for measuring low flow velocity in open channels. It was desirable to use small floats with specific gravity closer to unity to get more accurate results. The measured velocities and the estimated discharges were compared with discharges obtained using some other common laboratory measuring techniques. Good agreement was obtained between the integrating-float method results with the results of velocities obtained using other measurement techniques, with an error of less than 2.5%.
Satire is genre of the literary arts that has always been the source of human interest. Because it is difficult to accept direct criticism, Satire appears as a literary tool in which vices, follies, abuses and shortcomings are held up to ridicule, with the intent of shaming individuals, corporations, government, or society itself into improvement. A satirical critic usually employs irony to attain this goal. Although satire is usually meant to be humorous, its greater purpose is often profitable social criticism, using wit to draw at
... Show MoreIt is very known how great is the role of the Jewish writers in the system of the Zionist movement. The movement relied on writers and writers to carry out their programs, especially those pertaining to the creation of a "national homeland" for Jews. Most Jewish writers sang of Palestine even though they were not born there.
On such a basis, we have followed closely the writings of writers, critics and others by the end of the nineteenth century and the beginning of the twentieth century. We found that these writings are based on one common question: What is the fate of the Jewish people?
Most of these writings were accompanied by Theodor Herzl's proj
... Show MoreIt is noted in the title that the paper studies the viewpoint in the novel The Dog and the Long Night by the Iranian novelist Shahranoush Parsi Pour and in the novel Alibaba's Sad Night by the Iraqi novelist Abdulkhaliq Ar-Rikabi. Both are well known novelists, and about whose stories and novels many critical books, MA theses, and Ph.D. dissertations have been written. Also, some of their literary works have won prizes. Here, the researcher shed light on the concept of viewpoint, its types, and its importance in novels in general. This was done along with tackling the two viewpoints in both novels, where similarities and differences were identified. For this end, the researcher has adopted the analytic-descriptive appro
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
The theory of Topological Space Fiber is a new and essential branch of mathematics, less than three decades old, which is created in forced topologies. It was a very useful tool and played a central role in the theory of symmetry. Furthermore, interdependence is one of the main things considered in topology fiber theory. In this regard, we present the concept of topological spaces α associated with them and study the most important results.
In this research, we introduce and study the concept of fibrewise bitopological spaces. We generalize some fundamental results from fibrewise topology into fibrewise bitopological space. We also introduce the concepts of fibrewise closed bitopological spaces,(resp., open, locally sliceable and locally sectionable). We state and prove several propositions concerning with these concepts. On the other hand, we extend separation axioms of ordinary bitopology into fibrewise setting. The separation axioms we extend are called fibrewise pairwise T_0 spaces, fibrewise pairwise T_1 spaces, fibrewise pairwise R_0 spaces, fibrewise pairwise Hausdorff spaces, fibrewise pairwise functionally Hausdorff spaces, fibrewise pairwise regular spaces, fibrewise
... Show MoreIn this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Abstract
This research’s goal is to restore and to revive the jurisprudence of Mother of Believers (Um alMuaamineen) “Um Salmah” "may God bless her", and to highlight her outstanding assimilation and understanding of religion and her conscious thought. The current research is a comparative scientific theoretical study represented in the comparison of jurisprudence of “Um Salamah” with Hadiths of fasting and pilgrimage rules as well as the duration mentioned in jurisprudence of for doctrines( 4 schools of thought )to identify these hadiths with the inclusion and discussion of their evidence.
The current research included two topics: the first one is to identify and introduce
... Show MoreContinuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.