Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely sandy loam and clay loam, with three types of plants; (corn, tomato, and sweet sorghum). The soil wetting pattern was analyzed each half an hour for three hours of irrigation time and three initial soil moisture content. Equations for wetted radius and wetted depth were predicted and evaluated by utilizing the statistical parameters for the different hydraulic soil models (Model Efficiency (EF) and Root Mean Squares Error (RMSE)). The values RMSE does not exceed 0.40 cm, and EF is greater than 0.96 for all types of soil. These values were between the values obtained from program HYDRUS-2D and the values obtained from formulas. This shows that evolved formula can be utilized to describe the soil wetting pattern from the surface drip irrigation system. The relative error for the different hydraulic soil models was calculated and compared with Brooks and Corey's model, 1964. There was good agreement compared with different models. RMSE was 0.23 cm, while the relative error -1% and 1 for EF for wetted radius.
The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51) cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP) according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c); (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c), while the soil samples were dehydrated for one day
... Show MoreThis paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six employees , and it was chosen queuing model is a single-service channel M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and it was composed of data collection times (arrival time , service time, departure time)
... Show More
Abstract. This study presents experimental and numerical investigation on the effectiveness of electrode geometry on flushing and debris removal in Electrical Discharge Drilling (EDD) process. A new electrode geometry, namely side-cut electrode, was designed and manufactured based on circular electrode geometry. Several drilling operations were performed on stainless steel 304 using rotary tubular electrodes with circular and side-cut geometries. Drilling performance was characterized by Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Tool Wear Ratio (TWR). Dimensional features and surface quality of drilled holes were evaluated based on Overcut (OC), Hole Depth (HD), and Surface Roughness (SR). Three-dimensional
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not been met du
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not
... Show MoreThe electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the exp
... Show MoreIn this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the s
... Show MoreThe present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side.
A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations:
Z=Z0 +C.R.T/9.8(d2/D2+1) [Exp. [-9.8(d