Urban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between the three schools has been conducted in order to recognize the main critical points among them. Therefore, a theoretical framework is derived.
Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real outp
... Show MoreIn this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the
... Show MoreThe aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to veri
... Show MoreIn this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as the fuzzy reliability at the estimation of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that
... Show MoreIn this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling
... Show MoreIn this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
Digital forensic is part of forensic science that implicitly covers crime related to computer and other digital devices. It‟s being for a while that academic studies are interested in digital forensics. The researchers aim to find out a discipline based on scientific structures that defines a model reflecting their observations. This paper suggests a model to improve the whole investigation process and obtaining an accurate and complete evidence and adopts securing the digital evidence by cryptography algorithms presenting a reliable evidence in a court of law. This paper presents the main and basic concepts of the frameworks and models used in digital forensics investigation.
In the present paper, the authors introduce and investigates two new subclasses and, of the class k-fold bi-univalent functions in the open unit disk. The initial coefficients for all of the functions that belong to them were determined, as well as the coefficients for functions that belong to a field determining these coefficients requires a complicated process. The bounds for the initial coefficients and are contained among the remaining results in our analysis are obtained. In addition, some specific special improver results for the related classes are provided.
This paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreSome researchers are interested in using the flexible and applicable properties of quadratic functions as activation functions for FNNs. We study the essential approximation rate of any Lebesgue-integrable monotone function by a neural network of quadratic activation functions. The simultaneous degree of essential approximation is also studied. Both estimates are proved to be within the second order of modulus of smoothness.