Preferred Language
Articles
/
ijs-8430
On the Stability of Four Dimensional Lotka-Volterra Prey-Predator System
...Show More Authors

The aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to verify and support the obtained theoretical results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Modeling and Stability of Lotka-Volterra Prey-Predator System Involving Infectious Disease in Each Population
...Show More Authors

In this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.

View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Lotka-Volterra Model with Prey-Predators Food Chain
...Show More Authors

In this work, we consider a modification of the Lotka-Volterra food chain model of three species, each of them is growing logistically. We found that the model has eight equilibrium points, four of them always exist, while the rest exist under certain conditions. In terms of stability, we found that the system has five unstable equilibrium points, while the rest points are locally asymptotically stable under certain satisfying conditions. Finally, we provide an example to support the theoretical results.

View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator
...Show More Authors

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Mon Apr 04 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Stability and bifurcation of a prey-predator system incorporating fear and refuge
...Show More Authors

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.

... Show More
View Publication Preview PDF
Scopus (10)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
The Effect of Disease and Harvesting on The Dynamics of Prey-Predator System
...Show More Authors

In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.

View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Modeling and Analysis of A Prey-Predator System Incorporating Fear, Predator-Dependent Refuge, with Cannibalism In Prey
...Show More Authors

    The relationship between prey and predator populations is hypothesized and examined using a mathematical model. Predation fear, cannibalism among the prey population, and a refuge reliant on predators are predicted to occur. This study set out to look at the long-term behavior of the proposed model and the effects of its key elements. The solution properties of the model were investigated. All potential equilibrium points' existence and stability were looked at. The system's persistence requirements were established. What circumstances could lead to local bifurcation near equilibrium points was uncovered. Suitable Lyapunov functions are used to study the system's overall dynamics. Numerical simulations were conducted to verify the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Mar 27 2020
Journal Name
Iraqi Journal Of Science
On The Mathematical Model of Two- Prey and Two-Predator Species
...Show More Authors

In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.

View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Wed Jun 28 2023
Journal Name
Mathematics
The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey
...Show More Authors

A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Abstract And Applied Analysis
Dynamical Behaviors of a Fractional-Order Three Dimensional Prey-Predator Model
...Show More Authors

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
On The Dynamics of Discrete-Time Prey-Predator System with Ratio-Dependent Functional Response
...Show More Authors

In this paper, a discrete- time ratio-dependent prey- predator model is proposed and analyzed. All possible fixed points have been obtained. The local stability conditions for these fixed points have been established. The global stability of the proposed system is investigated numerically. Bifurcation diagrams as a function of growth rate of the prey species are drawn. It is observed that the proposed system has rich dynamics including chaos.

View Publication Preview PDF