Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Solvent Extraction of Light Lubricating Oil on Viscosity Index and Chemical Composition
...Show More Authors

An investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Determination of the standard cost of raw materials for the activity of extracting crude oil and gas by application in the North Oil Company
...Show More Authors

There are many problems facing the economic entities  as a result of its mass production &variation of its products  , the matter which had  increased the need & importance of cost accounting which is regarded a main tool for the managerial control.

The actual costing system is unable to meet the contemporary management needs ,so the Standard costing system appear to provide the management  with required information to perform its functions by the best use& way.

This research aims to determine  the standard cost for the  direct material for oil extraction activity by applying it in the north oil company.

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Treating Wet Oil in Amara Oil Field Using Nanomaterial (SiO2) With Different Types of De emulsifiers
...Show More Authors

One of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )%  respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.

   The high proportion

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (20)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using the Artificial Gas Lift to Increase the Productivity of Noor Oil Field / Mishrif Formation
...Show More Authors

Noor Oil Field is one of Iraqi oil fields located in Missan province / Amarah city. This field is not subjected to licensing rounds, but depends on the national effort of  Missan Oil Company. The first two wells in the field were drilled in seventies and were  not opened to production until 2009. The aim of this study is to study the possibility of using the method of gas lift to increase the productivity of this field . PROSPER software was used to design the continuous  gas lift by using maximum production rate in the design.

   The design was made after comparing  the measured pressure with the calculated pressure, this comparison  show  that the method of Beggs-Brill and Petroleum Exper

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (40)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Different Methods to Predict Oil in Place in Mishrif Formation / Amara Oil Field
...Show More Authors

The reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref