The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio toluene / n-Heptane) at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.
The low-pressure sprinklers have been widely used to replace the high-pressure impact sprinklers in the lateral move sprinkler irrigation system due to its low operating cost and high efficiency. However, runoff losses under the low-pressure sprinkler irrigation machine can be significant. This study aims to evaluate the performance of the variable pulsed irrigation algorithm (VPIA) in reducing the runoff losses under low-pressure lateral move sprinkler irrigation machine for three different soil types. The VPIA uses the ON-OFF pulsing technique to reduce the runoff losses by controlling the number and width of the pulses considering the soil and the irrigation machine properties. Als
Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreWith a goal to identify, and ultimately removing from the oil fraction, the carcinogenic components, an oil fraction oil has been analyzed into a main three hydrocarbon groups, paraffins, aromatics, and polycyclic saturates. A multi-stage adsorption apparatus has been used. Four units of 300 g alumina each seems to be sufficient for removing the polynuclear aromatics from 75 g of an oil fraction boiling between 365-375 °C from Qurna crude oil. The usefulness of the ternary diagram for analyzing the oil fraction to the three hydrocarbons groups has been studied and verified. An experimentally based linear relationship of density and refractive index was established to enable of identifying the composition of an oil fraction using th
... Show MoreAsphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show MoreThe purpose of this study is to avoid delays and cost changes that occur in emergency reconstruction projects especially in post disaster circumstances. This study is aimed to identify the factors that affect the real construction period and the real cost of a project against the estimated period of construction and the estimated cost of the project. The case study is related to the construction projects in Iraq. Thirty projects in different areas of construction in Iraq were selected as a sample for this study. Project participants from the projects authorities provided data about the projects through a data collection distributed survey made by the authors. Mathematical data analysis was used to construct a model to predict change
... Show MoreEnhanced oil recovery is used in many mature oil reservoirs to increase the oil recovery factor. Surfactant flooding has recently gained interest again. To create micro emulsions at the interface between crude oil and water, surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, thus achieving very low interfacial tension, which consequently assists mobilize the trapped oil.
In this study a flooding system, which has been manufactured and described at high pressure. The flooding processes included oil, water and surfactants. 15 core holders has been prepared at first stage of the experiment and filled with washed sand grains 80-500 mm and then packing the sand to obtain sand packs
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreThe present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst ty
... Show MoreHigh peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with
... Show MoreThe turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show More