Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Application of Neural Network in the Identification of the Cumulative Production from AB unit in Main pays Reservoir of South Rumaila Oil Field.
...Show More Authors

A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 11 2022
Journal Name
Journal Of Petroleum Research And Studies
Non-Productive Time Reduction during Oil Wells Drilling Operations
...Show More Authors

Often there is no well drilling without problems. The solution lies in managing and evaluating these problems and developing strategies to manage and scale them. Non-productive time (NPT) is one of the main causes of delayed drilling operations. Many events or possibilities can lead to a halt in drilling operations or a marginal decrease in the advancement of drilling, this is called (NPT). Reducing NPT has an important impact on the total expenditure, time and cost are considered one of the most important success factors in the oil industry. In other words, steps must be taken to investigate and eliminate loss of time, that is, unproductive time in the drilling rig in order to save time and cost and reduce wasted time. The data of

... Show More
View Publication
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using the Artificial Gas Lift to Increase the Productivity of Noor Oil Field / Mishrif Formation
...Show More Authors

Noor Oil Field is one of Iraqi oil fields located in Missan province / Amarah city. This field is not subjected to licensing rounds, but depends on the national effort of  Missan Oil Company. The first two wells in the field were drilled in seventies and were  not opened to production until 2009. The aim of this study is to study the possibility of using the method of gas lift to increase the productivity of this field . PROSPER software was used to design the continuous  gas lift by using maximum production rate in the design.

   The design was made after comparing  the measured pressure with the calculated pressure, this comparison  show  that the method of Beggs-Brill and Petroleum Exper

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (38)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Thu Jan 15 2009
Journal Name
Journal Of Kerbala University
Viscosity and Volumetric studies of some amino acids in solutions at different temperatures
...Show More Authors

Densities ρ and viscosities η for several concentrations of amino acids (Serine, Cysteine and Threonine) at different temperatures (298.15, 303.15 and 308.15K) have been measured. On the basis of these data, the apparent molal volumes v , partial molal volumes at infinite dilution v , slope Sv , Gibbs free energy of activation for viscous flow of solution ∆G1,2 and Jones – Dole Bcoefficients were calculated the nature of solute-solvent and solute-solute interactions have been discussed in terms of the values of v , v , Sv and B-coefficents

Publication Date
Wed Oct 08 2008
Journal Name
Journal Of Kerbala University
Viscosity and Volumetric studies of some amino acids in solutions at different temperatures.
...Show More Authors

Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Materials Science And Chemical Engineering
Extraction and Modelling of Oil from Eucalyptus camadulensis by Organic Solvent
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli

... Show More