In recent years, there is more interest in water sources availability, including groundwater due to an increase in demand for water because of the increasing population in the world, and the water recedes due to climate change also. Therefore, the study of groundwater has required more attention. The aim of the present study is to establish a MODFLOW model in the groundwater modeling system software to simulate the movement of groundwater in the Turssaq alluvial fan which is located in the Qazaniyah city, east of Diyala Governorate. The solid model was used to define the aquifer in the study area. Using the GIS software, mapping and preparing the data needed to create a conceptual model were carried out. The data of the wells were used to create and define the aquifer, then a three-dimensional model was created. Measuring the water table for some wells were simultaneously monitored to determine the hydraulic conductivity values of the aquifer through the (PEST) package provided by the software. The hydraulic conductivity value of the main layer was 18 m/d. Then several readings of observation wells were recorded for the period extended from 1/Nov/2018 to 22/May/2019 for the calibration process in the unsteady situation and to determine the coefficient of storage. The value of the storage coefficient was defined as 0.001. Several scenarios were conducted for the study area to find the best distance between the wells. Three distances were tested, 500, 1000 and 1500 m. The operating periods were 6, 12 and 18 (hours/day). Results obtained from the model show that the best distance between the wells is 1000 meters with a maximum operating rate of 12 hours/day. The maximum discharge with the lowest distance and the lowest drawdown of the groundwater table are considered.
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-deriva
... Show MoreIn this paper, 3D simulation of the global coronal magnetic field, which use observed line of sight component of the photosphere magnetic field from (MDI/SOHO) was carried out using potential field model. The obtained results, improved the theoretical models of the coronal magnetic field, which represent a suitable lower boundary conditions (Bx, By, Bz) at the base of the linear force-free and nonlinear force free models, provides a less computationally expensive method than other models. Generally, very high speed computer and special configuration is needed to solve such problem as well as the problem of viewing the streamline of the magnetic field. For high accuracy special mathematical treatment was adopted to solve the computation comp
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show MoreThe aim of this study is to investigate the feasibility of underground storage of gas in Um El-Radhuma formation /Ratawi field. This formation is an aquifer consisting of a high permeable dolomitebeds overlain by impermeable anhydrite bed of Rus formation. Interactive petrophysics (IP), Petrel REand Eclipse 100 softwares were used to conduct a well log interpretation, build a reservoir simulationmodel and predict the reservoir behavior during storage respectively. A black oil, three dimensionaland two phase fluid model has been used. The results showed that the upper part of Um El-Radhumaformation is suitable for underground gas storage, because of the seal of its cap rock and capability ofreserving gas in the reservoir. It was foun
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreUse of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)