The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.
Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform
... Show MoreNatural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show More
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
In this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be ded
... Show MorePortland Cement is manufactured by adding 3% gypsum to clinker which is produced by grinding, pulverizing, mixing, and then burning a raw mix of silica, and calcium carbonate. Limestone is the main source of carbonates, while clay collected from arable land is the main source of silica. The marl in the Euphrates Formation was studied as an alternative to arable lands. Nine boreholes drilled and penetrated the marl layer in selected locations at the Kufa cement quarry. Forty-one samples of marl from boreholes and four samples of limestone from the closed area were collected. The chemical content of the major oxides and the hardness of the marl layer was very encouraging as a raw material for Portland Cement as they are SiO2 (17.60),
... Show MoreA modification to cascaded single-stage distributed amplifier (CSSDA) design by using active inductor is proposed. This modification is shown to render the amplifier suitable for high gain operation in small on-chip area. Microwave office program simulation of the Novel design approach shows that it has performance compatible with the conventional distributed amplifiers but with smaller area. The CSSDA is suitable for optical and satellite communication systems.
In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.