This is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally, several conclusions were drawn from the results that were given in this papers
A condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
Applications of nonlinear, time variant, and variable parameters represent a big challenge in a conventional control systems, the control strategy of the fuzzy systems may be represents a simple, a robust and an intelligent solution for such applications.
This paper presents a design of fuzzy control system that consists of three sub controllers; a fuzzy temperature controller (FC_T), a fuzzy humidity controller (FC_H) and a ventilation control system; to control the complicate environment of the greenhouse (GH) using a proposed multi-choice control system approach. However, to reduce the cost of the crop production in the GH, the first choice is using the ventilation system to control the temperature and humidit
... Show MoreThis study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreThis study included an analysis of three stations (Al Dora, Al Za'franiya, and Arab Ejbur) chosen to study the Physiochemical and microorganism (Fungi and Bacteria) loud of the Tigris River in the southern section of Baghdad city. The result of this research shows that the highest temperature recorded in summer in Al Za'franiya was 37Co, while the lowest temperature recorded in winter in Al Dora was 9Co. and the value of pH recorded the highest in summer it was 7.9 in Arab Ejbur, and the lowest value was in winter 7.1 in Al Dora regions, While Total Organic Carbon (TOC) shows the highest values found in the summer was 6.7 Mg L-1in Al Za'franiya Samples, and the lowest values were 2.0 Mg L-1in Arab Ejbur during the winter. The more f
... Show MoreIn this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show MoreBy reading the book (Endless Forms Most Beautiful: The New Science of Evo Devo) by Sean B. Carroll, new horizons opened up about the nature of the formation of the living organism. Although he presented the idea that the artist was influenced by the material assets of nature in his holographic art formations, the new science of Evo-Devo (Evolutionary Developmental Science) provided models worth standing on when comparing the similarity of the formation of living organisms on the one hand, and the formation of works of art with holographic organic bodies on the other. But the excitement lies in the fact that the formation of living natural organisms is often driven by subtle intelligent mechanisms that are different from the mechanisms us
... Show MoreThe development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste
... Show MoreThis study aimed to evaluate oral health (OH) and periodontal diseases (PD) awareness in the Iraqi population.
This study was a questionnaire‐based online survey of two weeks duration. The questionnaire was built using a Google platform and was distributed randomly via social media (Facebook and Telegram). The questionnaire consisted of a demographic data section and two other main sections for the evaluation of OH and PD awareness. Each response was marked with “1” for a positive answer and “0” for the other answers. For each respondent, answers were summed to give
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for