In the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particle swarm optimization (PSO) have been applied and compared to find the best tuning of PID parameters. The results demonstrate that the hybrid T2FPIDC under the Sugeno FIS with optimal PID using PSO produces the best results in terms of stable output power at variable wind speeds and reducing the error in the output signal.
Wind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the optimal
... Show MoreThe blade pitch angle (BPA) in wind turbine (WT) is controlled to maximize output power generation above the rated wind speed (WS). In this paper, four types of controllers are suggested and compared for BPA controller in WT: PID controller (PIDC), type-1 fuzzy logic controller (T1-FLC), type-2 fuzzy logic controller (T2-FLC), and hybrid fuzzy-PID controller (FPIDC). The Mamdani and Sugeno fuzzy inference systems (FIS) have been compared to find the best inference system used in FLC. Genetic algorithm (GA) and Particle swarm optimization algorithm (PSO) are used to find the optimal tuning of the PID parameter. The results of500-kw horizontal-axis wind turbine show that PIDC based on PSO can reduced 2.81% in summation error of power
... Show MoreThe blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreWind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di
... Show MoreWind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreIn this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show More