Background: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A total of 165 patients participated
in the study, 82 with mechanical bowel
preparation and 83 without. The 2 groups
were similar in age, sex and type of surgical
procedure. 134 patients (81.2 %) underwent
surgery owing to colorectal cancer & 31
patients (18.8 %) owing to benign disease.
The hospitalization period was longer in the
bowel-prepared group (mean ± SD, 8.2 ± 5.1
days) as compared with the non prepared
group (mean ± SD, 8.0 ± 2.7 days). However,
this difference was not statistically significant.
The time until the 1st bowel movement was
similar between the 2 groups : a mean ± SD of
4.2 ± 1.3 days in the non prepared group as
compared with a men ± SD 4.3 ± 1.1 days in
the prepared group ( P = NS ).
Conclusion: Our results suggest that no
advantage is gained by preoperative
mechanical bowel preparation in elective
colorectal surgery.
Asphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreThe main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreNaturally occurring radioactive materials (NORM) contaminated sites at Al-Rumaila Iraqi oil fields have been characterized as a part of soil remediation project. Activity of radium isotopes in contaminated soil have been determined using gamma spectrometer High Purity Germanium detector (HPGe) and found to be very high for Al-Markezia, Al-Qurainat degassing stations and storage area at Khadhir Almay region. The activity concentration of samples ranges from 6474.11±563.8 Bq/kg to 1232.5±60.9 Bq/kg with mean value of 3853.3 Bq/kg for 226Ra, 843.59±8.39 Bq/kg to 302.2±9.2 Bq/kg with mean value of 572.9 Bq/kg for 232Th and 294.31±18.56 Bq/kg to 156.64±18.1 Bq/kg with mean value of 225.5 for 40K. S
... Show MoreThis paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the exp
... Show MoreIn this paper, a study of improving the physical properties, mechanical and thermal insulation are conducted to produce gypsum boards with lightweight from waste materials. These boards can be used as an internal packaging wall or partitions tile of non-Bering with a high thermal insulation. Gypsum plaster mixed with waste material like (PET Polyethylene terephthalate, sawdust in size4.75mm and rubber) in different ratio (5%, 7%, 10%, 15%, 20%, 25%and 30%) of plaster to produce boards and then to find out the effect of these materials on the properties of boards, so that tests of consistency, setting time, flexural strength, density and thermal conductivity were achieved for all samples to find out this effect. The result shows that the
... Show MoreThe ceramic composite with different proportions of clay and silica was prepared with a grain size of 70 μm and the weight percentage was selected for four groups (clayx silica100-x) were x q15, 25, 30 and 50. In this manuscript, for each pressured sample, a sintering procedure was carried out for 3 hours under static air and at various sintering temperatures (1000, 1100, 1200, 1400)°C. After sintering, the density, porosity, water absorption, compression strength and thermal conductivity were measured. The best results were obtained using a mixture of 15% clay and 85% silica which were sintering at 1400°C for three hours under air.
Poly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreRotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The
... Show MoreIn the present paper a low cost mechanical vibration shaker of rotating unbalanced type with uniaxial shaking table was designed and constructed in an attempt to provide opportunities for experimental testing and application of vibration in experimental modal analysis, stress relief of weldments, effect of vibration on heat transfer and seismic testing of civil engineering structures. Also, it provides unexpressive solution to enhance the knowledge and technical skills of students in mechanical vibration laboratory. The shaker consists of a five main parts shaker frame, shaker table, flexible support, drive motor, and eccentricity mechanism. The experimental results show that the amplitude of the shaker is increased with increasing the f
... Show More