In the present paper a low cost mechanical vibration shaker of rotating unbalanced type with uniaxial shaking table was designed and constructed in an attempt to provide opportunities for experimental testing and application of vibration in experimental modal analysis, stress relief of weldments, effect of vibration on heat transfer and seismic testing of civil engineering structures. Also, it provides unexpressive solution to enhance the knowledge and technical skills of students in mechanical vibration laboratory. The shaker consists of a five main parts shaker frame, shaker table, flexible support, drive motor, and eccentricity mechanism. The experimental results show that the amplitude of the shaker is increased with increasing the frequency ratio and the maximum value was attained near the resonance condition. Also, the magnitude of amplitude is increased with increasing the eccentric mass and eccentricity values. A reasonable agreement with theoretical results shows that the shaker can be used with reliable results in vibration testing purposes. Also, in this paper, the frequency ranges of the shaker were determined for constant displacement and for constant acceleration tests to satisfy all the frequency limitation requirements of the mechanical shaker.
PM3 semiempirical method and Density Functional Theory (DFT) calculations of the type (B3LYP) and a Gaussian basis set (6-311G) were carried out for fullerene C60 molecule with its construction units (5radialene, 1,2,3-trimethylene indan, and corannulene), to evaluate the geometrical structure (bond lengths, symmetry, and energetic such as heat of formation ΔH0f, total energy Etot., dipole moment μ, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap ΔEHOMO-LUMO), the distribution of electron density and vibration frequencies, all at their equilibrium geometries. Assignment of the vibrations modes was done according to the movement of the atoms as a result of DFT calculatio
... Show MorePM3 semiempirical method and Density Functional Theory (DFT) calculations of the type (B3LYP) and a Gaussian basis set (6-311G) were carried out for fullerene C60 molecule with its construction units (5radialene, 1,2,3-trimethylene indan, and corannulene), to evaluate the geometrical structure (bond lengths, symmetry, and energetic such as heat of formation ΔH0f, total energy Etot., dipole moment μ, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap ΔEHOMO-LUMO), the distribution of electron density and vibration frequencies, all at their equilibrium geometries. Assignment of the vibrations modes was done according to the movement of the atoms as a result of DFT calculatio
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
Abstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreThe paper presents mainly the dynamic response of an angle ply composite laminated plates subjected to thermo-mechanical loading. The response are analyzed by analytically using Newmark direct integration method with Navier solution, numerically by ANSYS. The experimental investigation is to fabricate the laminates and to find mechanical and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus, longitudinal and transverse thermal expansion. Present of temperature could increase dynamic response of plate also depending on lamination angle, type of mechanical load and the value of temperature.
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreDensity Functional Theory (DFT) calculation of the type (B3LYP) and 6-311G basis set level using Gaussian-03 program were carried out for equilibrium geometry of construction units of (6,0) linear ZigZag SWCNT (mono, Di, Tri and Tetra ring layers), to evaluate the geometrical structure (bond length), symmetries, physical properties and energetic such as standard heat of formation (ΔH0f), total energy (Etot.), dipole moment (μ), Highest Occupied Molecular Orbital Energy (EHOMO), Lowest Unoccupied Molecular Orbital Energy (ELUMO), energy gap (ΔEHOMO-LUMO), the distribution of electron density () and vibration frequencies, all at their equilibrium geometries. Assignment of the vibration frequencies according to the group theory was do
... Show MoreSemi-empirical methods (MINDO/3, PM3) and Density Functional Theory calculations (DFT/ B3LYP/ 6-311G) were carried out to evaluate the vibration frequencies and Infra-Red (IR) absorption intensities for equilibrium geometries, of 6,7,8,10 and 12 cyclacene's molecules of different diameters for (SWCNTs). The Gaussian 03 and MOPAC computational packages have been employed throughout this study to compute the geometrical Parameters (bond lengths and bond angles) and the energetic properties, (vibration frequency, heat of formation and electronic charge distribution for the modeled 6,7,8,10 and 12 cyclacene's molecules of different diameters nanostructures (zig-zag). The results include the assignment of all puckering, breathing and clock-an
... Show More