Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement, patients were imaged with sagittal short tau inversion recovery sequences and sagittal T2 weighted. Results: The mean age of the patients was 32.5 ± 6.7years; female to male ratio was 2.7:1. The total number of spinal cord MS lesions was 44 of them 86.4% in the cervical spine, 68.2%of the lesions had less than one vertebra extension,79.6% of the lesions did not show changes in the spinal cord morphology. There was a significant upgrading in the lesions conspicuity at short tau inversion recovery sequence comparing to T2 weighted image, P<0.001. A significant difference had been found in artifact grading between both sequences; P<0.001. Conclusions: short tau inversion recovery magnetic resonance image sequences improve detection of MS spinal cord plaques compared with T2 weighted image and itincreasesthe conspicuity of the visualized T2weighted image lesions, but also it accentuates theartifacts more than T2weighted image.
With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreIn recent years and decades, there is a great need for developing new alternative energy sources or renewable sustainable energy. On the other hand, new technology approaches are growing . towards benefits from the valuable nutrients in wastewater which are unrecoverable by traditional wastewater treatment processes. In the current study, a novel integrated system of microbial fuel cell and anoxic bioreactor (MFC-ANB) was designed and constructed to investigate its potential for slaughterhouses wastewater treatment, nitrogen recovery, and power generation. The system consisted of a double-chamber tubular type MFC with biocathode inoculated with freshly collected activated sludge. The MFC-ANB system was continuously fed with real-fi
... Show MoreBackground: Evaluation and measurement of primary stability could be achieved by several methods, including the resonance frequency analysis (RFA) and implant insertion torque (IT) values. The need for a sufficient primary stability, guaranteed by an adequate insertion torque and implant stability quotient values, increased its importance mainly in one stage implants or in immediate loading protocols. The aims of this study was to find if there is a correlation between the peak insertion torque (PIT) and ISQ values of implants inserted in the jaws of different bone quality which regarded as two important clinical determinant factors for prediction of implant primary stability, and to evaluate and compare whether an experienced clinician cou
... Show MoreBackground : Shoulder pain is a common problem that can pose difficult diagnostic and therapeutic challenges for the family physician It is the third most common musculoskeletal complaint in the general population, and account for 5% of all general practitioners musculoskeletal consults Objective: To determine the diagnostic performance of ultrasonography compared with the physical examination for detection of rotator cuff tears in painful shoulder syndrome. Method: Prospective study was done on seventy patients (48 male, 22 female), age ranged between 30-70 years (mean age 50 years), From February 2007 to July 2011, were subjected to comparative study in Al-Kindy teaching hospital with rotator cuff tears, including physical and ultrasonogr
... Show MoreBackground : Shoulder pain is a common problem that can pose difficult diagnostic and therapeutic challenges for the family physician It is the third most common musculoskeletal complaint in the general population, and account for 5% of all general practitioners musculoskeletal consults
Objective: To determine the diagnostic performance of ultrasonography compared with the physical examination for detection of rotator cuff tears in painful shoulder syndrome.
Method: Prospective study was done on seventy patients (48 male, 22 female), age ranged between 30-70 years (mean age 50 years), From February 2007 to July 2011, were subjected to comparative study in Al-Kindy teaching hospital with rotator cuff tears, including physical and ul
Darcy-Weisbach (D-W) is a typical resistance equation in pressured flow; however, some academics and engineers prefer Hazen-Williams (H-W) for assessing water distribution networks. The main difference is that the (D-W) friction factor changes with the Reynolds number, while the (H-W) coefficient is a constant value for a certain material. This study uses WaterGEMS CONNECT Edition update 1 to find an empirical relation between the (H-W) and (H-W) equations for two 400 mm and 500 mm pipe systems. The hydraulic model was done, and two scenarios were applied by changing the (H-W) coefficient to show the difference in results of head loss. The results showed a strong relationship between both equations with correlation coefficients of 0.999,
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show More