The outbreak of a current public health coronavirus 2019 disease is a causative agent of a serious acute respiratory syndrome and even death. COVID-19 has exposed to multi-suggested pharmaceutical agents to control this global disease. Baricitinib, a well-known antirheumatic agent, was one of them. This article reviews the likely pros and cons of baricitinib in attenuation of COVID-19 based on the mechanism of drug action as well as its pharmacokinetics. The inhibitory effect of baricitinib on receptor mediated endocytosis promoter, AKK1, and on JAK-STAT signaling pathway is benefacial in inhibition of both viral assembling and inflammation. Also, its pharmacokinetic has encouraged the physicians toward the drug selection for COVID-19 treatment. On the other hand, most of baricitinib side effects are dose-dependent. In conclusion, targeting of AAK1 and JAK1/2 using baricitinib has predicted to be potential and effective with minimal side effects in management COVID-19 infected patients for a short therapeutic dosing period. Laboratory monitoring should be considered for some parameters. However, experimental trials are mandatory for a long-term treatment with a lower dose of baricitinib to evaluate its effectiveness and safety in patients with moderate COVID-19 infection.
The solution gas-oil ratio is an important measurement in reservoir engineering calculations. The correlations are used when experimental PVT data from particular field are missing. Additional advantages of the correlations are saving of cost and time.
This paper proposes a correlation to calculate the solution gas -oil ratio at pressures below bubble point pressure. It was obtained by multiple linear regression analysis of PVT data collected from many Iraqi fields.
In this study, the solution gas-oil ratio was taken as a function of bubble point pressure, stock tank oil gravity, reservoir pressure, reservoir temperature and relative gas density.
The construction of the new correlation is depending on thirty seven PVT reports th
In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
Is to obtain competitive advantage legitimate objective pursued by all organizations to achieve, because they live today in environments of rapid change and dynamic in order to meet the demands of the customer changing as well as intense competition between the organizations, which requires them to get the location of competitive markets in order to do this will remain to do the building and strengthening competitive advantage to be able to achieve, but that this feature is not easy and is not only through the identification and use of a successful strategy for a competitive standard and then manage it successfully. Hence the research problem of determining the sources of differentiation strategy and its impact on the dimensions of compe
... Show MoreTime-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreThis study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight).
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show More