Time-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-story drift and acceleration of the superstructure. Results presented reflect the potential of synthetic time history analysis to capture base isolator characteristics and to show their effect on the results of the dynamic analysis when compared to target response spectrum analysis. Geometric nonlinear analysis due to P-delta reveals that p-delta effect reduces base shear and story acceleration by about 5%, whereas inter-story drifts increased by about 3%. This study shows that including geometric nonlinearity due to p-delta reduces pseudo acceleration of the superstructure and hence the earthquake-induced forces in the structure.
This paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreThis study aims to preparation a standards code for sustainability requirements to contribute in a better understanding to the concept of sustainability assessment systems in the dimensions of Iraqi projects in general and in the high-rise building. Iraq is one of the developing countries that faced significant challenges in sustainability aspects environmental, economic and social, it became necessary to develop an effective sustainability building assessment system in respect of the local context in Iraq. This study presented a proposal for a system of assessing the sustainability requirements of Iraqi high rise buildings (ISHTAR), which has been developed through several integrated
Seismic facies analysis constrained with well log information have been used to predict lithofacies distribution across the Okam Field of Niger Delta. Density and gamma ray logs were cross-plotted and the seismic section was subdivided vertically into different seismic facies. The delineated lithologies, from well logs were correlated with seismic facies signatures using lines of intersection across the wells. Gamma ray and resistivity logs were used to identify the interfaces between the lithofacies and correlated across the field. Structural interpretation was carried out. Time slices were generated and examined at different intervals within the identified reservoirs. Stratigraphic related attribute and envelope were extracted on these
... Show MoreAn integrated seismic sequence stratigraphy and facies analysis has been carried out with a view to understanding the depositional environment and stratal stacking pattern of Nandy Field of Niger Delta. Well logs and biostratigraphic information were used to identify the lithologies, stratal stacking patterns, stratigraphic surfaces, system tracts and reservoir potentials of the field. Seismic sequence stratigraphy and seismic reflection patterns were used to identify the seismic facies. Facies-related attributes were employed to identify the continuity and amplitude of seismic events. Three seismic facies packages and three reservoir sands were identified. The environments of deposition of the area consist of marginal marine to continen
... Show MoreThis paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and this load w
... Show MoreIn this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with
... Show More