Pan sharpening (fusion image) is the procedure of merging suitable information from two or more images into a single image. The image fusion techniques allow the combination of different information sources to improve the quality of image and increase its utility for a particular application. In this research, six pan-sharpening method have been implemented between the panchromatic and multispectral images, these methods include Ehlers, color normalize, Gram-Schmidt, local mean and variance matching, Daubechies of rank two and Symlets of rank four wavelet transform. Two images captured by two different sensors such as landsat-8 and world view-2 have been adopted to achieve the fusion purpose. Different fidelity metric like MSE, RMSE, PSNR, Cc, ERGAS and RASE have been used to achieve the comparison among the fusion methods. The results show that Daubechies wavelet (db2) transform was good method for pan sharpening images. Where good statistical values have been obtained, when it is applied on the first and second image that are captured by different sensors with different spatial resolution
Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreCompetencies topic in general , and Administrative competencies in specific, are considered as important subject in the contemporary administrative literature in all countries as well as in public and privet Organizations. For this reason, we have need to study those competencies in many Iraqi Organizations.
Two Organizations wer chosen for this research one of them is the Institution of taxation, and the other is the General company of Electric the data and information related to the research have been collected by desined questioner which has been given to a sample of (50) persions divided eqully between the two maintioned organizations.
The results of the study had differences
... Show MoreThe electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Abstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreAlpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images