Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images
In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
In some cases, surgeons need to navigate through the computer system for reconfirmation patients’ details and unfortunately surgeons unable to manage both computer system and operation at the same time. In this paper we propose a solution for this problem especially designed for heart surgeon, by introducing voice activation system with 3D visualization of Angiographic images, 2D visualization of Echocardiography processed video and selected patient’s details. In this study, the processing, approximation of the 3D angiography and the visualization of the 2D echocardiography video with voice recognition control are the most challenging work. The work involve with predicting 3D coronary three from 2D angiography image and also image enhan
... Show MoreThe brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreToday’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreBrain tissues segmentation is usually concerned with the delineation of three types of brain matters Grey Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). Because most brain structures are anatomically defined by boundaries of these tissue classes, accurate segmentation of brain tissues into one of these categories is an important step in quantitative morphological study of the brain. As well as the abnormalities regions like tumors are needed to be delineated. The extra-cortical voxels in MR brain images are often removed in order to facilitate accurate analysis of cortical structures. Brain extraction is necessary to avoid the misclassifications of surrounding tissues, skull and scalp as WM, GM or tumor when implementing s
... Show More