Preferred Language
Articles
/
jih-966
On Almost Bounded Submodules
...Show More Authors

        Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÏN such that annR(N)=annR(x).

        In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.

        Moreover, some relations between almost bounded submodules and other types of modules are considered.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Basrah Journal Of Science
Nearly Maximal Submodules
...Show More Authors

Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Semimaximal Submodules
...Show More Authors

     Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if

 the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are  introduced and given some  properties .

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Interdisciplinary Mathematics
DJ-coessential submodules
...Show More Authors

Let R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Annihilator Essential Submodules
...Show More Authors
Abstract<p>Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.</p>
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
S-Coprime Submodules
...Show More Authors

  In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.

View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
S-maximal Submodules
...Show More Authors

Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
J-Small Semiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and chara</p> ... Show More
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Weakly Small Smiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <ita></ita></p> ... Show More
Scopus Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Nearly Prime Submodules
...Show More Authors

        In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.

View Publication Preview PDF
Crossref