Convergence prop erties of Jackson polynomials have been considered by Zugmund
[1,ch.X] in (1959) and J.Szbados [2], (p =ï‚¥) while in (1983) V.A.Popov and J.Szabados [3]
(1 ï‚£p ï‚£ ï‚¥) have proved a direct inequality for Jackson polynomials in L
p-sp ace of 2ï°-periodic bounded Riemann integrable functions (f R) in terms of some modulus of
continuity .
In 1991 S.K.Jassim proved direct and inverse inequality for Jackson polynomials in
locally global norms (L
ï¤,p) of 2ï°-p eriodic bounded measurable functions (f Lï‚¥) in terms of
suitable Peetre K-functional [4].
Now the aim of our paper is to proved direct and inverse inequalities for Jackson
polynomials of (f L) in (L
ï¤,p
) in terms of the average modulus of continuity .
The estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.
Discourse markers are expressions used to connect sentences to what comes before or after and indicate a speaker's attitude to what he is saying.As linguistic items, they have important functions in discourses of various styles or registers. And being connective elements, discourse markers relate sentences, clauses and paragraphs to each other. "One of the most prominent function of discourse markers, however, is to signal the kinds of relations a speaker perceives between different parts of the discourse". (Lenk 1997: 2) Through political discourse, different types of discourse markers are used. This paper deals with the importance and functions of discourse markers and tries to shed light on the kinds of discourse markers used in polit
... Show MoreIn this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process par
... Show MoreThis study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreIn this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.