This paper deals with proposing new lifting scheme (HYBRID Algorithm) that is capable of preventing images and documents which are fraud through decomposing there in to the real colors value arrays (red, blue and green) to create retrieval keys for its properties and store it in the database and then check the document originality by retrieve the query image or document through the decomposition described above and compare the predicted color values (retrieval keys) of the query document with those stored in the database. The proposed algorithm has been developed from the two known lifting schemes (Haar and D4) by merging them to find out HYBRID lifting scheme. The validity and accuracy of the proposed algorithm have been evaluated through experiments with the decomposition of database image consists of important documents like college certifications up to maximal decomposition level of 14. The tests results using the HYBRID algorithm were compared with that of the other methods (Haar and D4 Lifting scheme) in terms of the accuracy of discovering forgeries (retrieval accuracy) and the required store memory area. The results illustrate that the HYBRID algorithm show better performance than the others in terms of the sensitivity to any change in the retrieval documents. Also, HYBRID Algorithm exhibits good improvement in terms of the used memory space compared to the results obtained by D4 Lifting scheme.
Abstract—In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, t
... Show MoreFuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreThe Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreA new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments
The aim of this study was to measure the effectiveness of a proposed program to develop the creative abilities of the students of Tabuk University and its impact on the creative output of the NEOM project. The sample of the study consisted of (50) university students divided into two groups: an experimental group of 25 students who receive the proposed training program, and control group of (25) students.
To achieve these objectives, the researcher designed and developed tools to collect the required data, which were verified their validity and reliability.
The descriptive statistics of mean, standard deviations, correlation coefficient, T test for the associated sample were used in the analysis of the results of th
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show More