The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 MeV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element and their isotopes are "formulated" they represent the variation of the cross section with energy . The evaluated (α,n) cross sections which was used to calculate the neutron yield for (Mo) for the first time ,which are very important in nuclear technology .
In this study, light elements Li ,10B for (a,n) and (n,a) reactions
as well as o-particle energy from threshold energy to 10 MeV are
used according to the available data of reaction cross sections. The
more recent cross sections data of (a,n) and (n,a) reactions are
reproduced in fine steps 42 Kev for 10B(n,o) Li in the specified
energy range, as well as cross section (o,n) Values were derived from
the published data of (n,a) as a function of a-energy in the same fine
energy steps by using the principle inverse reactions. This calculation
involves only the ground state of Li OB in the reactions 'Li(a,n) B
B (n,a) Li
Introduction
When two charged nuclei overcome their Coulomb repulsion, a
rearrangement
The experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show MoreBackground: Bone augmentation techniques are commonly employed in medical fields. This biomaterial system must be readily available, easily applicable by minimally-invasive technique and able to release an osteoinductive growth factor. Such a system will be able to engineer new bone formation locally at the site of injection. Hyaluronic acid has osteogenic potential that can be exploited not only for repairing bone defects but also for providing transplantable bone for the reconstruction of a variety of bone defects. The aims of this study were to evaluate the effects of Hyaluronic acid gel on bone healing by immunohistochemical estimation of transforming growth factor -beta 3 in experimental and control groups. Materials and methods: Thirt
... Show MoreIn this study, the magic nuclei is divided into two groups, one of them is light group and the other is middle group, it was calculated shell corrections for all nuclei, and also it was concluded the relationship between cross sections for nuclear reactions ()α,n and the mass number (A) for all nuclei to incident neutrons (14.5 MeV). We found empirical equations to asymmetry parameter (N-Z)/A as function of mass number and for that two groups: for A=38 to A=40 light nuclei.()0534.10263.0+−=−AAZN for A=50 to A=89 middle nuclei. ()408.00151.00001.02−+=−AAAZN for A=90 to A=144 middle nuclei. ()0711.10221
Sulfamethoxazole (SMX) was added to P-N,N-dimethyl amino benzaldehyde (PDAB) by condensation reaction in acidic medium to form, a yellow colored dye compound which exhibits maximum absorption (λmax) at 450.5 nm. The concentration of (SMX) was determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, design of experiment method has been applied in optimization of the variables affecting the color producing reaction. Beer’s law obeyed in the concentration range of 0.1-10 μg.mL-1 with molar absorptivity of 5.7950×104 L.mol-1.cm-1. The limit of detection and Sandell's sensitivity value were 0.078 μ
... Show MoreIn this study light elements 10B , 10Be for 10B(n,p)10Be reaction as well as proton energy from 0.987 MeV to 2.028 MeV with threshold energy (1.04MeV) are used according to the available data of reaction cross sections. The more recent cross sections data of 10Be(p,n)10B reaction is reproduced in fin steps in the specified energy range , as well as cross section (p,n) values were derived from the published data of (n,p) as a function of energy in the same fine energy steps by using the reciprocity theory of principle inverse reaction . This calculation involves only the first excited state of 10B , 10Be in the reactions 10Be(p,n)10B and 10B(n,p)10Be.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
In our research, we introduced new concepts, namely *and **-light mappings, after we knew *and **-totally disconnected mappings through the use of -open sets.
Many examples, facts, relationships and results have been given to support our work.
The main purpose of this paper is to investigate some results. When h is ï‡ -(ï¬ ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .
Both 13C 16O and 22Ne 25Mg reactions perform a cosmic role in the production of neutrons in AGB stars, which significantly contributes to the nucleosynthesis via the s-process. The astrophysical S-factor for both reactions is calculated in this research, utilizing EMPIRE code and depending on two parameter sets for the optical potential. These datasets were published earlier by McFadden and Satchler (denoted here as MFS) and Avrigeanu and Hodgson (denoted as AH) for the non-resonant region of the spectrum and over a temperature range of . The extrapolated S-factor at zero energy is derived to be and for 13C 16O, while the values were and fo
... Show More