Preferred Language
Articles
/
jih-805
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Study of Second Hankel Determinant for Certain Subclasses of Functions Defined by Al-Oboudi Differential Operator

The concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ

Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 02 2011
Journal Name
Journal Of Educational And Psychological Researches
Differential Item Functioning at the scal of mental health

At the last years, the interesting of measurement spicilists was increased to study differential item functioning (DIF) wich is reflect the difference of propability true response for test item from subgroups which have equal level of ability . The aims of this research are, inform the DIFat Namers’scale(2009) for mental health to prepare students and detect items that have DIF. Sample research contants (540) students, we use Mantel- Haenzel chi-square to detect DIF. The results are point to there are (26) items have DIF according to gender which are delated form the scale after that.

 

View Publication Preview PDF
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of King Saud University - Science
Crossref (12)
Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
Crossref (1)
Crossref
View Publication
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Derivation of Embedded Diagonally Implicit Methods for Directly Solving Fourth-order ODEs

EDIRKTO, an Implicit Type Runge-Kutta  Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.

Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
On a Subclass of Analytic and Univalent Functions with Positive Coefficients Defined by a Differential Operator

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:  

 

which is defined in the open unit disk  satisfying the following condition

This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.

Scopus (1)
Scopus Crossref
View Publication Preview PDF