Preferred Language
Articles
/
jih-1807
Finite Element Method With Linear Rectangular Element for Solving Nanoscale InAs⁄GaAs Quantum Ring Structures
...Show More Authors

        This paper is concerned with the solution of the nanoscale structures consisting of the   with an effective mass envelope function theory, the electronic states of the  quantum ring are studied.  In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of  quantum rings are studied by the one electronic band Hamiltonian effective mass approximation, the energy- and position-dependent on electron effective mass approximation, and the spin-dependent on the Ben Daniel-Duke boundary conditions. In the description of the Hamiltonian matrix elements, the Finite elements method with different base piecewise linear function is adopted. The non-linear energy confinement problem is solved approximately by using the Finite elements method with piecewise  linear function, to calculate the energy of the one electron states for the   quantum ring. The results of numerical example are compared for accuracy and efficiency with the finite element method of linear triangular element. This comparison shows that good results of numerical example.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOELASTIC MATERIALS
...Show More Authors

A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 20 2012
Journal Name
J. Of University Of Anbar For Pure Science
Laser Processing For Nanoscale Size Quantum Wires of AlGaAs/GaAs
...Show More Authors

In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.

Publication Date
Wed Feb 03 2021
Journal Name
Structural Concrete
Finite element analysis of rectangular RC beams strengthened with FRP laminates under pure torsion
...Show More Authors

Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Nov 05 2019
Journal Name
Cardiff University
Technology development for nanoscale InSb quantum split-gate structures
...Show More Authors

Publication Date
Fri Mar 14 2003
Journal Name
Journal Of Engineering
Slope Stability of Embankments by the Finite Element Method
...Show More Authors

Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Numerical Analysis of Least-Squares Group Finite Element Method for Coupled Burgers' Problem
...Show More Authors

In this paper, a least squares group finite element method for solving coupled Burgers' problem in   2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved.  The theoretical results  show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 25 2018
Journal Name
Iraqi Journal Of Science
Refractive Index Sensor Based on Micro- Structured Optical Fibers with Using Finite Element Method
...Show More Authors

In this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core.  The air holes of fiber has been infiltrated  with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Plain Concrete Beam Analyzed Using Extended Finite Element Method
...Show More Authors

In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr

... Show More
Crossref
Publication Date
Mon Dec 23 2024
Journal Name
Journal Of Engineering
Aerodynamic Characteristics of a Rectangular Wing Using Non-Linear Vortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of

... Show More
View Publication
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Finite Element Analysis of UHPC Corbels
...Show More Authors

   Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws  and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
 

View Publication Preview PDF