Preferred Language
Articles
/
jih-759
Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation of the First Order
...Show More Authors

  In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented.      The numerical solution of these equations is obtained by using Open Newton Cotes formula.      The Open Newton Cotes formula is applied to find the optimum solution for this equation.      The computer program is written in (MATLAB) language (version 6)

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method
...Show More Authors

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Bounded Solutions of the Second Order Differential Equation x ?+f(x) x ?+g(x)=u(t)
...Show More Authors

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations
...Show More Authors

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
A Study of Stability of First-Order Delay Differential Equations Using Fixed Point Theorem Banach
...Show More Authors

     In this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation

     where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
On the Growth of Solutions of Second Order Linear Complex Differential Equations whose Coefficients Satisfy Certain Conditions
...Show More Authors

In this paper, we study the growth of solutions of the second order linear complex differential equations  insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Mean Square Exponential Stability of Semi-Linear Stochastic Perturbed Differential Equation Via Lyapunov Function Approach
...Show More Authors

    In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Determination of Timewise-Source Coefficient in Time-Fractional Reaction-Diffusion Equation from First Order Heat Moment
...Show More Authors

     This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations
...Show More Authors

 

   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref