In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented. The numerical solution of these equations is obtained by using Open Newton Cotes formula. The Open Newton Cotes formula is applied to find the optimum solution for this equation. The computer program is written in (MATLAB) language (version 6)
An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreSignal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
EDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.