In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M; In other words, M is a Max– module iff (0) is a *- submodule, where a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly. In this paper, some properties and characterizations of max– modules and *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.
Throughout this paper we introduce the concept of quasi closed submodules which is weaker than the concept of closed submodules. By using this concept we define the class of fully extending modules, where an R-module M is called fully extending if every quasi closed submodule of M is a direct summand.This class of modules is stronger than the class of extending modules. Many results about this concept are given, also many relationships with other related concepts are introduced.
Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.
In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given.
There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.
In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.