Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
Let R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.
Let R be a commutative ring with 10 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by A.Y. Darani and F. Soheilina . Many new properties and characterizations are given .
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreBroyden update is one of the one-rank updates which solves the unconstrained optimization problem but this update does not guarantee the positive definite and the symmetric property of Hessian matrix.
In this paper the guarantee of positive definite and symmetric property for the Hessian matrix will be established by updating the vector which represents the difference between the next gradient and the current gradient of the objective function assumed to be twice continuous and differentiable .Numerical results are reported to compare the proposed method with the Broyden method under standard problems.
The present study includes a theoretical treatment to derive the general equations of pumping threshold power ( ), laser output power (Pout), and laser device efficiency (ƞ) of the element-doped thin-disk laser (Yb3+) with a quasi-three-level pumping scheme in the continuous wave mode at a temperature of (299K°). In this study, the host crystals (YAG) were selected as typical examples of this laser design in a Gaussian transverse mode. The numerical solution of these equations was made using Matlab software by selecting the basic parameters from the recently published scientific articles for the laser design of these crystal hosts. According to this simulation, this article studied the effect o
... Show MoreIn this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
Solar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreThe encoding of long low density parity check (LDPC) codes presents a challenge compared to its decoding. The Quasi Cyclic (QC) LDPC codes offer the advantage for reducing the complexity for both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank deficient parity matrix over the codes of full rank parity matrix is investigated.