The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr
... Show MoreThe steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran
... Show MoreIn this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.
In this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
In this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D(
... Show MoreThe main aim of this paper is to introduce the concept of a Fuzzy Internal Direct Product of fuzzy subgroups of group . We study some properties and prove some theorems about this concept ,which is very important and interesting of fuzzy groups and very useful in applications of fuzzy mathematics in general and especially in fuzzy groups.
This research include building mathematical models for aggregating planning and shorting planning by using integer programming technique for planning master production scheduling in order to control on the operating production for manufacturing companies to achieve their objectives of increasing the efficiency of utilizing resources and reduce storage and improving customers service through deliver in the actual dates and reducing delays.
In this research, Fuzzy Analytic Hierarchy Process technique is applied (Fuzzy AHP) which is one of multi-criteria decision making techniques to evaluate the criteria for urban planning projects, the project of developing master plan of Al-Muqdadiyah city to 2035 has been chosen as a case study. The researcher prepared a list of criteria in addition to the authorized departments criteria and previous researches in order to choose optimized master plan according to these criteria. This research aims at employing the foundations of (Fuzzy AHP) technique in evaluating urban planning criteria precisely and flexible. The results of the data analysis to the individuals of the sample who are specialists, in this aspect. The la
... Show More