In this paper we show that the function , () p fLI α ∈ ,0<p<1 where I=[-1,1] can be approximated by an algebraic polynomial with an error not exceeding , 1 ( , , ) kp ft n ϕ αω where
,
1 ( , , ) kp ft n ϕ αω is the Ditizian–Totik modules of smoothness of unbounded function in , () p LI
An abortion that occurs spontaneously is known as a miscarriage. Various effectors associated with abortion such as Genetic and uterine anomalies, Endocrinopathy, immunological dysfunctions, infectious agents, environmental contaminants, psychogenetic elements, and endometriosis. Maternal infections considered the main reason for pregnancy wastage in females with Bad Obstetric History (BOH). Candida albicans is a dimorphic fungus that can grow as yeast or filamentous cells and considered one of the limited species of the Candida genus that cause humans candidiasis. It is an opportunistic fungus that responsible for mucosal infections in the mouth and genital tract. Excessive growth of C. albicans will follow with Vulvovaginal candid
... Show MoreIn this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.
Background:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreLet be a commutative ring with identity and let be an R-module. We call an R-submodule of as P-essential if for each nonzero prime submodule of and 0 . Also, we call an R-module as P-uniform if every non-zero submodule of is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule of a multiplication R-module becomes P-essential. Moreover, various properties of P-essential submodules are considered.
In This paper, we have been approximated Grűnwald-Letnikov Derivative of a function having m continuous derivatives by Bernstein Chlodowsky polynomials with proving its best approximation. As well as we have been solved Bagley-Torvik equation and Fokker–Planck equation where the derivative is in Grűnwald-Letnikov sense.
The problem of finding the cyclic decomposition (c.d.) for the groups ), where prime upper than 9 is determined in this work. Also, we compute the Artin characters (A.ch.) and Artin indicator (A.ind.) for the same groups, we obtain that after computing the conjugacy classes, cyclic subgroups, the ordinary character table (o.ch.ta.) and the rational valued character table for each group.
Background & Objective: Breast cancer (BC) is the most prevalent disease among women around the world, considered the world's leading cause of death (15% of the total cancer deaths) in women in 2018. β-catenin is a multifunctional protein located in the cytoplasm and/or nucleus of the cell. Several studies suggested that β-catenin expression plays a critical role in cancer invasion and metastasis. This research sought to examine β-catenin expression in breast cancer and its associations with clinico-pathological features (such as histopathological types, grade, and invasion depth of tumor as well as lymph node involvement) and breast cancer patient survival. Methods:
... Show MoreThe concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ-ring M into ΓM-modules X are presented. We prove that every Jordan generalized higher derivation of Γ-ring M into 2-torsion free ΓM-module X, such that aαbβc=aβbαc, for all a, b, c M and α,βΓ, is Jordan generalized triple higher derivation of M into X.
Copulas are very efficient functions in the field of statistics and specially in statistical inference. They are fundamental tools in the study of dependence structures and deriving their properties. These reasons motivated us to examine and show various types of copula functions and their families. Also, we separately explain each method that is used to construct each copula in detail with different examples. There are various outcomes that show the copulas and their densities with respect to the joint distribution functions. The aim is to make copulas available to new researchers and readers who are interested in the modern phenomenon of statistical inferences.